摘要:跨学科(例如医疗保健,汽车,取证和天文学)的高光谱成像的应用受到复杂的过滤器和分散透镜的要求。通过利用具有工程光谱响应和高级信号处理技术的设备,可以使光谱成像过程在各个领域更容易接近。我们提出了一种使用光子捕获表面纹理(PTST)的光谱响应设计方法,该方法消除了外部衍射光学元件的必要性,并促进了系统的微型化。我们已经开发了一个分析模型,以在PTST存在下使用硅的有效折射率来计算电磁波耦合。我们已广泛验证了模拟和实验数据的模型,以确保我们的预测准确性。我们观察到峰耦合波长与PTST周期之间存在强烈的线性关系,以及与PTST直径的中等比例关系。此外,我们确定了跨间距与波传播模式之间的显着相关性。模型的实验验证是使用配备PTST的光电二极管通过互补的金属氧化物 - 氧化 - 兼容器兼容的过程进行的。此外,我们演示了这些配备PTST的光二极管的电气和光学性能,以显示高速(响应时间:27 PS),高增益(乘法增益,M:90)和低工作电压(击穿电压:〜8.0 V)。最后,我们利用制造的配备PTST光电二极管的独特响应来模拟高光谱成像,提供原理证明。这些发现对于高性能光谱仪的片上整合,保证实时数据操作以及高光谱成像系统的成本效益的产生至关重要。关键字:雪崩光电二极管,高光谱成像,多光谱成像,光子捕获功能,光谱响应工程■简介
量子发射器的闪烁统计及其相应的马尔可夫模型在生物样本的高分辨率显微镜以及纳米光电子学和许多其他科学和工程领域中发挥着重要作用。目前用于分析闪烁统计的方法,如全计数统计和维特比算法,在低光子速率下会失效。我们提出了一种评估方案,它消除了对最小光子通量和通常的光子事件分箱的需求,而这限制了测量带宽。我们的方法基于测量记录的高阶光谱,我们在最近引入的量子多光谱方法中对其进行了建模,该方法来自连续量子测量理论。通过这种方法,我们可以确定半导体量子点在比标准实验低 1000 倍的光级下的开启和关闭速率,比使用全计数统计方案实现的低 20 倍。因此,建立了一种非常强大的高带宽方法,用于单光子隐马尔可夫模型的参数学习任务,并可应用于许多科学领域。
海上情境意识(MSA)长期以来一直是海上交通监视和管理领域中的关键重点。船舶交通的复杂性越来越多,源于多个船舶之间的复杂多属性交互,再加上交通动态的连续发展,在达到准确的MSA方面构成了重大挑战,尤其是在复杂的港口水域中。这项研究致力于建立高级MET的那言来分区海上流量,旨在增强交通模式的解释性和加强船舶反碰撞风险管理。具体来说,最初引入了三种相互作用措施,包括冲突临界,空间距离和接近速率,以量化船舶之间时空相互作用的不同方面。随后,设计了一个半监督的光谱正则化框架,以熟练地适应多个相互作用信息和从历史分配结构中得出的先验知识。该框架有助于将区域交通分割为多个集群,其中具有相同集群的船舶表现出较高的时间稳定性,冲突连通性,空间紧凑性和收敛性运动。同时,设计了一种自适应超参数选择模型,以寻求各种情况下的最佳交通分区结果,同时还将用户偏好纳入特定交互指标。使用来自宁波 - Zhoushan端口的AIS数据进行综合实验,以彻底评估模型的功效。研究发现,从案例分析和模型比较中发现了拟议方法清楚地展示了所提出的方法成功解构区域交通复杂性,捕获高风险区域并加强战略性海上安全措施的能力。因此,该方法具有巨大的希望,可以推进海上监视系统的智能并促进海上交通管理的自动化。
边缘冰区(MIZ)是海冰和开阔海洋之间的过渡区,这是一个强大,复杂的相互作用和海洋,海冰和大气之间的反馈区域,对数值建模和进行观察的挑战(Dumont,2022; 2022; Horvat,2022)。近年来,人们对MIZ过程的兴趣日益增加,以越来越多的原位,基于卫星和实验室观察性运动以及理论和数值研究表现出来。由于物理学家,数学家,海洋学家,数字建模者等的跨学科努力,进展是实质性和多向的。MIZ系统的关键组成部分,通常被视为其定义特征之一,是海冰 - 波浪相互作用。他们已经研究了很多年(Squire,2018年,2020年; Shen,2022; Thomson,2022),但大多数研究都集中在涉及现象的狭窄子集上。
越来越多的需求减少复杂的高维二词系统为简单,低维模型产生了许多不同的还原技术(参见Benner等人。[1],Rowley和Dawson [2],Ghadami和Epureanu [3],Brunton等。[4],Taira等。[5]和Touzé等。[6]用于最近的评论)。在这里,我们专注于这些方法之一的扩展,频谱亚算物(SSM)还原到分段光滑的机械系统。最初针对Haller和Ponsioen [7]的平滑动力系统定义,主要SSM是最平稳的不变流形,与稳定状态下线性化系统的光谱子空间相切,并且具有相同的尺寸。因此,SSM数学上正式化并扩展了Shaw和Pierre [8,9]和Shaw等人在开创性工作中引入的非线性正常模式(NNM)的最初思想。[10](有关最近的评论,请参见Mikhlin和Avramov [11])。每当光谱子空间内的线性频谱与该子空间之外的线性频谱之间,SSM在自主和非自治系统中的存在,唯一性和持久性已得到证明(Haller and Ponsioen [7][12]以及Haro和de la llave [13])。由最慢的线性模式跨越光谱子空间的主要SSM切线吸引了附近的所有轨迹,因此其内部动力学是一种理想的,数学上合理的非线性降低模型。最近的工作揭示了在𝐶∞
物理系统的动态行为通常源自其光谱特性。在开放系统中,有效的非炎症描述可以在复杂平面中获得丰富的光谱结构,因此伴随的动态非常丰富,而基本连接的识别和构成很具有挑战性。在这里,我们实验证明了局部激发的瞬时自我加速与使用有损耗的光子量子步道的非热谱拓扑之间的对应关系。首先将重点放在一维量子步行上,我们表明,测得的波函数的短时加速度与特征光谱所包围的区域成正比。然后,我们在二维量子步行中揭示了类似的对应关系,其中自动加速与复杂参数空间中特征光谱包含的体积成正比。在两个维度中,瞬态自动加速度越过长期行为,在漂移速度下以恒定流动为主。我们的结果揭示了频谱拓扑与瞬态动力学之间的通用对应关系,并为非光谱几何形状源自光谱系统的现象提供了敏感的探针。
蓝细菌是内陆水域藻类开花的主要因素,威胁生态系统功能和用水的用途,尤其是在产生毒素的菌株占主导地位时。在这里,我们检查了140个高光谱(HS)图像,这些代表的五个代表,可能是毒素产生和盛开的属属微囊藻,浮游生物,浮游生物,阿法尼兹瘤,菊花菌,菊花菌和dolichospermum,以确定可见和近距离散布的潜在的(以/nirir的范围)的潜在。培养物在各种光和营养条件下生长,以诱导各种色素和光谱变异性,模仿自然环境中可能发现的变化。重要的是,我们假设了一个简化的方案,其中所有光谱变异性均来自蓝细菌。在整个蓝细菌生命周期中,获得了多个HS图像以及叶绿素A和植物蛋白酶的提取。图像,并使用K-均值算法提取来自感兴趣区域的平均光谱。使用七种方法对光谱数据进行了处理,以随后整合到随机森林模型中,其性能通过训练,验证和测试集的不同指标进行了评估。使用第一或第二个衍生物以及光谱平滑的成功分类率接近90%,并确定VIS和NIR中的重要波长。微囊孢子和Chrysosporum是达到最高精度(> 95%)的属,其次是浮游生物(79%),最后是Dolichospermum和Aphanizomenon(> 50%)。HS图像对
相比之下,IRRAS在氧化物和二元组中的应用通常不那么发达了。虽然广泛可用的氧化物粉末吸附剂的实验性IR数据,但这些材料的宏观单晶的10,11 IRRAS数据受到限制。10–13此限制源于电介质的特定光学特性,并阻碍了直到最近氧化物上IRRAS数据的实验记录。金属和半导体之间的关键区别是通过金属电子对电场进行筛选,影响总红外反射率,并引起所谓的表面选择规则,管理金属表面上的IRRAS。2,14该规则规定,对于金属,通常仅具有过渡偶极矩的成分的振动
发育协调障碍(DCD)和注意力缺陷/多动症(ADHD)症状重叠,通常是共体会。DCD和ADHD的差异对于更好地理解条件和有针对性的支持至关重要。用脑电图测量电脑活动可能有助于辨别和更好地理解条件,因为它可以客观地捕获与外部可测量症状相关的大脑活动的变化和潜在的差异,这对有针对性的干预措施有益。因此,进行了一项试点研究,以探索静止状态DCD和/或ADHD的成年人之间的神经生理学差异。总共n = 46名DCD(n = 12),ADHD(n = 9),DCD + ADHD(n = 8)或典型发育(n = 17)的成年人(n = 17),在记录其EEG时,用眼睛凝视和眼睛睁开了2分钟。光谱功率是针对频带的计算:Delta(0.5-3 Hz),Theta(3.5–7 Hz),Alpha(7.5–12.5 Hz),beta(13-25 Hz),MU(8-13 Hz),Gamma,Gamma,Gamma(LOW:30-40 Hz; HIGH:40-50 -50-50 -50-50 -HZ)。参与者,大多数波形中的光谱功率从眼睛闭合到闭合的条件下显着增加。组在开眼界期间枕骨β功率的差异很大,这是由DCD驱动的,而不是通常发展组比较。然而,其他组比较仅达到边缘意义,包括眼睛开眼界的全脑α和MU功率,以及闭合眼睛时的额叶beta和枕骨高γ功率。因此,比较EEG光谱能力的较大研究可能有助于确定DCD的神经系统机制和DCD和ADHD的持续分化。虽然不能确定不强的标记以区分DCD与ADHD,但我们认为Beta活性的几种模式表明了DCD的潜在运动维持差异。
金属纳米颗粒可以在金属的电子与令人兴奋的电磁波相相振荡时支持共振。目前在许多不同的研究领域中研究了这些局部的表面等离子体共振(LSPR),以改善许多物理现象,例如太阳能电池板的光子至电子转换效率以及电子到光子转换效率在光发射二极管中(LED)。通过正确选择纳米颗粒的金属材料,可以调整它们具有高度效果的光谱范围。的确,金纳米颗粒在可见光谱范围的红色部分中引起共鸣,其中铝纳米颗粒在蓝色的元素中引起共鸣。不幸的是,与其他共振现象相比,LSPR的质量因素非常差,这主要是因为它们在金属材料中受到了很大的影响。但是,当将金属纳米颗粒作为阵列组织时,可以观察到衍射现象,这使得可以将所有纳米颗粒搭配在一起并减少其LSPR的阻尼。当LSPR耦合到平面内(放牧)衍射顺序[1]时,将发生这种称为表面晶格共振(SLR)的集体共振。对于许多应用,例如LED或生物医学成像中的发射增强,这种尖锐的共振非常有趣。但是,如果元表面基于一种金属材料,则其光学响应的光谱范围受到限制。