不孕不育是一个日益严重的全球公共卫生问题,影响着全球超过 4800 万对夫妇。1 男性和女性对不孕不育率的贡献相同,各自占不孕不育病例的约 40%,2 其余病例的原因尚不清楚。基本精液分析以评估精子的浓度、活力、运动能力和形态是诊断男性不育的主要步骤。3 然而,这一步骤不足以做出决定性的诊断决定,因为这些精液参数对于可育和不育男性来说有很大的重叠。4 相反,精子 DNA 完整性分析在男性不育诊断和辅助生殖中变得越来越重要,因为它与受精率、胚胎发育和后代健康密切相关。5 在辅助生殖和胞浆内精子注射的背景下,精子样本的 DNA 分析对于指导治疗和防止受损 DNA 中的遗传疾病传播给后代至关重要。6 DNA 损伤包括 DNA 碎片、异常 DNA 包装和鱼精蛋白缺乏。7a
摘要 为了触发配子融合,精子需要激活分子机制,其中精子 IZUMO1 和卵母细胞 JUNO(IZUMO1R)相互作用在哺乳动物中起着至关重要的作用。尽管最近已经确定了一组参与此过程的因子,但尚未报道在脊椎动物和无脊椎动物中都能发挥作用的共同因子。在这里,我们首先证明进化保守的因子树突状细胞表达的七个跨膜蛋白结构域 1(DCST1)和树突状细胞表达的七个跨膜蛋白结构域 2(DCST2)对小鼠的精子-卵子融合至关重要,这已通过基因破坏和互补实验得到证实。我们还发现另一个与配子融合相关的精子因子 SPACA6 的蛋白质稳定性受到 DCST1/2 和 IZUMO1 的不同调节。因此,我们认为精子通过整合各种分子途径来确保哺乳动物的正常受精,其中包括经过近十亿年进化而形成的进化保守的系统。
推迟生育计划和父母年龄增加会增加不孕不育和后代健康受损的风险。虽然衰老对卵子发生的影响已被充分研究,但对精子发生的影响却了解甚少。评估衰老对男性生殖细胞的影响对于区分衰老相关疾病、不孕不育和“纯”衰老的影响提出了挑战。然而,要了解衰老对男性生殖细胞的影响,需要将年龄与其他因素区分开来。因此,在这篇综述中,我们讨论了目前关于健康衰老和精子发生的知识。男性衰老以前与精子参数下降、激素分泌紊乱和怀孕时间延长等有关。然而,最近的数据显示,健康衰老不会损害睾丸在激素产生和精子生成方面的功能。此外,衰老生殖细胞中会发生内在的、与年龄相关的、高度特异性的过程,这与躯体衰老明显不同。精原干细胞群的变化表明干细胞衰竭得到了补偿。在衰老的育龄男性中,可以观察到干细胞生态位的改变和精子中的分子衰老特征。DNA碎片率以及DNA甲基化模式的变化和端粒长度的增加是精子衰老的标志。综上所述,我们提出了静止的A暗精原细胞的重新激活与这些激活的精原细胞产生的衰老精子的分子变化之间的假定联系。我们建议对男性生殖细胞的“纯”年龄效应进行基线研究,可用于后续研究不育或合并症的影响。生殖 (2021) 161 R89–R101
mtt在生物学中被广泛用作细胞活力的探针,因为它能够在强烈的氧化还原酶活性部位产生不溶性甲贡祖的沉积物。这种反应通常以反映线粒体氧化还原活性;但是,在某些细胞类型中也记录了线粒体MTT减少。鉴于这种背景,我们着手确定哺乳动物精子中甲唑沉积的主要地点。在小鼠中,大多数MTT还原发生在广泛的线粒体回旋中,精子头上有一个次要的formazan沉积部位。相比之下,人类精子通常显示出小小的混乱的中件,表现出适度的MTT减少活动,并在精子头的各个位置从脖子到前杂质体的精子头部的各个位置伴随着主要的金属软骨外甲氮杂沉积物。马精子呈现了这两种模式的组合,在线粒体中的主要formazan沉积伴随着大约20%的细胞中的线粒体外甲米唑沉积物。人类精子的功能与一种甲米甲酸甲珠外颗粒的存在正相关。随后的研究表明,存在二苯基碘,锌,2-脱氧葡萄糖,共酶Q,一种模拟和NADPH氧化酶抑制剂的二苯基碘,锌,2-脱氧葡萄糖,锌,锌,2-脱氧葡萄糖,抑制这种线粒体的活性。我们得出的结论是,精子的MTT将MTT降低为特定于物种,并传达了有关线粒体与线粒体外氧化还原活性的相对重要性的重要信息,从而定义了这些细胞的功能质量。繁殖(2020)160 431–443
设备制造和操作。纸基精子 DNA 分析设备在 PowerPoint 中设计,并使用固体蜡打印机(ColorQube 8570N,加拿大施乐)打印在硝化纤维素纸上(平均孔径为 0.45 μm,加拿大 Bio-Rad Laboratories Ltd.)。然后将图案化的硝化纤维素纸在 125 ºC 下加热 5 分钟,让蜡扩散穿过纸张厚度并从疏水边界扩散。为了将 ICP 功能添加到纸张中,在样品通道的开始处用移液器吸取 0.5 L 阳离子选择性纳米多孔 Nafion(20% 重量,低级脂肪醇和水,Sigma-Aldrich,美国),然后在去离子水中对膜进行水合 30 分钟。设备在室温下风干并在使用后存放在培养皿中。要使用该设备,需要将 3 μL 样品移液到样品通道中,然后用去离子水使设备饱和。通过在样品通道上施加 150 V/cm 的电压 15 分钟来诱导 ICP。在此步骤之后,使用直立荧光显微镜(Axiophot,德国卡尔蔡司公司)捕获绿色(dsDNA)和红色(ssDNA)荧光图像。捕获的图像在 ImageJ 中处理,并使用 Matlab 中的书面脚本进行数据量化。
参考文献 Chase MW,Soltis DE,Olmstead RG,Morgan D.,Les DH,Mishler BD,Duvall M. R. , 价格 R. A. , Hills HG , Qiu Y.-L . , Kron KA , Rettig J. H.,Conti E.,Palmer J. D 円 Manhart J. R. , Sytsma K. J. ,迈克尔斯 H. J. , 克莱斯 W. J. , Karol KG , Clark WD , Hedroen M. , Gaut BS , Jansen R. K. , 金K.-J. , 温皮 CF , 史密斯 J 。 F.,Fumier GR,Strauss SH,Xiang Q.-Y. , Plunkett GM , Soltis PS , Swensen S. , Williams SE , Gadek P. A . , 奎因 C.J. , Eguiarte LE, Golenberg E., Leam GH Jr., Graham SW, Barrett SC, Dayanandan S. 和 Albert VA 1993. 种子植物的系统发育:质体基因 rbc 的核苷酸序列分析 L. Ann.密苏里机器人。警卫。 80: 528-580。道尔 J. J。和 Doyle J. L. 1987.一种用于少量新鲜叶组织的快速 DNA 分离程序。植物化学。公牛 l。 19: 11-15。/平塚 J. , Shimada H. , Whittier R. , lshibashi T. , Sakamoto M. , Mori M. , Kondo C. , Ho 吋 i Y. , Hirai A. , Shinozaki K. 和 Sugiura M. 1989. 水稻(Oryza sativa)叶绿体基因组的完整核苷酸序列:不同 tRNA 基因之间的分子间重组导致谷物进化过程中的 m 吋 2 或质体 DNA 倒位。莫尔。基因 t 将军。 217: 185-194。 Johnson LA 和 Soltis DE 1994. 虎耳草科植物的 matK DNA 序列和系统发育重建。字符串系 统。博特。 19:143-156。 Neuhaus H. 和 Link G. 1987.芥菜的叶绿体 tRNA Lys (UUU) 基因。当前。基因。 11:251-257。 Steele KP 和 Vilgalys R. 1994. 利用质体基因 mat K 的核苷酸序列对花荬科进行系统发育分析。博特。 19:126-142。 Sugita M. , Shinozaki K. 和 Sugiura M. 1985. 烟草叶绿体 tRNA Lys(UUU)基因含有一个2.5千碱基对的内含子:一个开放阅读框和内含子内保守的边界序列。 Proc. Na. l.学院Sci.USA 82: 3557-3561.