甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
多稳定元素通常用于设计可构造和自适应结构,因为它们可以响应变化的负载,同时允许自锁定能力,从而实现大型且可逆的形状变化。但是,现有的多稳定结构具有取决于其初始设计的属性,并且不能量身定制后制作。在这里,提出了一种新型的设计方法,该方法将多稳定结构与双向形状的记忆聚合物相结合。通过利用双轴应变条件下的单向和双向形状记忆效应,结构可以重新编程其3D形状,熊载荷和自我活性。结果表明,可以按照用户的需要调整结构的形状和态度,并且可以在命令上抑制或激活多稳定性。与常规的多稳定系统相比,多稳定性的控制可阻止结构的不希望捕捉,并具有更高的负载能力。提出的方法可能会增加现有多稳定概念功能的可能性,从而可能实现高度适应性的机械结构的潜力,这些机械结构可以在单声道和多稳定性之间可逆地切换,并且可以响应温度变化而经历形状变化。
摘要 — 稳定的量子计算要求噪声结果即使在存在噪声波动的情况下也能保持有界。然而,非平稳噪声过程会导致量子设备不同特性的漂移,从而极大地影响电路结果。在这里,我们讨论噪声的时间和空间变化如何将设备可靠性与量子计算稳定性联系起来。首先,我们的方法使用 Hellinger 距离量化在不同时间和地点收集的特征指标的统计分布差异。然后,我们验证一个分析界限,将该距离直接与计算期望值的稳定性联系起来。我们的演示使用华盛顿超导 transmon 设备的模型进行数值模拟。我们发现稳定性指标始终由相应的 Hellinger 距离从上方限制,这可以作为指定的容差水平。这些结果强调了可靠量子计算设备的重要性及其对稳定量子计算的影响。索引术语 — 设备可靠性、程序稳定性、时空非平稳性、时变量子噪声
政府内阁府;经济产业省 (METI);财务省 (MOF);以及日本银行 (BOJ)。世界银行、国际货币基金组织 (IMF) 和经济合作与发展组织 (OECD) 提供了出色的比较数据和分析。它们为大量优秀的学术和私人市场研究提供了基础。例如,请参阅 2019 年 4 月的《OECD 日本经济调查》。我非常感谢 Larry Meissner 的全面、专注的编辑和研究支持。
作者的完整清单:Tremblay,Marie-Hélène;佐治亚理工学院,化学与生物化学学院舒特特(Kelly);牛津大学,Federico物理学;佐治亚理工学院化学与生物化学学院舒尔茨,索尔斯滕; Helmholtz-Zentrum柏林材料和Energie GmbH;柏林的洪堡大学,伯特尔德(Berthold)的物理与虹膜研究所(Iris Adlershof Wegner);洪堡大学关于柏林数学科学教师;柏林物理研究所Jia,小米的洪堡大学;亚登埃西张埃克斯学院佐治亚理工学院工程学院;佐治亚理工学院化学与生物化学学院Longhi,Elena;佐治亚理工学院,化学与生物化学学院Dasari,Raghunath;佐治亚理工学院,菲恩特斯·赫尔南德斯(Canek);佐治亚理工学院,基佩伦,伯纳德;佐治亚理工学院工程学院,诺伯特ECE Koch学院;洪堡大学关于柏林数学科学教师;伯林物理研究所Snaith,亨利的洪堡大学;牛津大学,史蒂芬物理Barlow;佐治亚理工学院化学与生物化学学院Marder,塞思;佐治亚理工学院化学与生物化学学院
在过去的十年中,ORNL进行了广泛的设计,研究,开发,原型制作和生产演示活动,以推动将安装在该新设施中的EMIS和GCIS技术。SIPRC将为DOE提供多种同位素生产系统,这些系统将能够丰富多种稳定的同位素。它包括添加更多系统并随着需求的增加而扩大建筑占地面积的空间。
甲脒铅三碘化物 (FAPbI 3 ) 已成为金属卤化物钙钛矿家族中高效、稳定的钙钛矿太阳能电池 (PSC) 的有希望的候选者,尤其是与早期的甲基铵铅三碘化物 (MAPbI 3 ) 原型相比。这是因为 FAPbI 3 具有更窄的带隙能量 ≈ 1.45 eV——更接近 Shockley-Queisser 最优 [1]——并且比 MAPbI 3 更热稳定。[2] 然而,α 相 FAPbI 3 的形成通常需要高温退火 (≥ 150 ° C) 数十分钟,[3] 而获得的 α -FAPbI 3 在室温下是亚稳态的,因为它会迅速降解为光惰性的非钙钛矿同质异形体 (δ-FAPbI 3 )。 [4] 钙钛矿相的亚稳态归因于甲脒(FA +)的尺寸相对较大,导致Gold-schmidt容忍因子> 1,从而驱动六方晶体结构而不是立方晶体结构的形成。[5]
原理:为此,我们设计了一款微型探头,称为 Neuropixels 2.0,其 5120 个记录点分布在四个柄上。探头和头台被微型化为原始尺寸的三分之一左右(即 Neuropixels 1.0 探头的尺寸),因此两个探头及其单个头台仅重 ~1.1 克,且不会损失通道数(每个探头 384 个通道)。使用两个四柄探头可在一次植入中提供 10,240 个记录点。为了在脑部运动时也能实现稳定的记录,我们优化了记录点的排列。该探头具有更密集的线性化几何形状,可使用新设计的算法进行事后计算运动校正。该算法在 Kilosort 2.5 软件包中实现,可从脉冲数据确定随时间的运动,并使用空间重采样对其进行校正,就像在图像配准中一样。
摘要:无机钙钛矿因其广泛的光电应用而显示出诱人的前景。最近,据报道,无机钙钛矿纳米晶体 (NC) 的超晶体 (SC) 具有高度有序的结构以及新颖的集体光学特性,为高效薄膜开辟了新的机会。在这里,我们报告了通过油包油乳液模板化对无机钙钛矿 NC 的球形、立方体和六边形 SC 的大规模组装控制。我们表明,立方体 NC 的圆度与限制液滴表面张力之间的相互作用决定了超结构形态,我们利用这种相互作用来设计 SC 的密集超晶格。SC 薄膜表现出至少两个月的稳定性大大增强,没有明显的结构退化和轻微的光学变化。我们对钙钛矿 NC 超结构的受控大规模组装的研究结果为基于中观结构块微流体生产的自下而上的光电器件生产提供了新的前景。关键词:组装、乳液滴模板、超晶体、钙钛矿薄膜、稳定性
f纳克技术大学,丹麦技术大学物理系,丹麦2820 G材料学院,太阳YAT-SEN大学,广州510275,H中国H中心微型/纳米电子中心(Novitas),电气和电子工程学院,电气和电子工程学院,Nanyang技术大学CNRS/NTU/THALES,UMI 3288,研究技术广场,637553,新加坡†相同的贡献 *相应的作者。Karen Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sgKaren Chan:kchan@fysik.dtu.dk; pingqi gao:gaopq3@mail.sysu.edu.cn; Hong Li:ehongli@ntu.edu.sg