官能化石墨烯的有前途的方法之一是将杂原子掺入碳SP2晶格中,因为事实证明,它是一种可控制地调整石墨烯化学的有效且通用的方法。我们提出了与B掺杂剂选择性掺杂石墨烯的独特无污染方法,在标准的CVD生长过程中,它们从大部分Ni(111)单晶体中创建的储层中掺入一层,从而导致清洁,多功能和有效的方法用于创建B-poped Chapeene。我们结合了实验性(STM,XPS)和Theo Retical(DFT,模拟的STM)研究,以了解替代性B DOP蚂蚁的结构和化学性质。与先前报道的FCC位点中的替代B一起,我们首次观察到另外两个缺陷,即在顶部位点中替代B,而在八面体地下位点中的间隙B。广泛的STM在遗迹中证实存在于经过准备的B掺杂的Gra Phene中B掺杂剂的低浓度区域的存在,表明硼龙掺入不均匀。在两个替代部位之间,在低浓度的B掺杂区域中没有观察到偏好,而在高B浓度区域中,优先选择了Sublattices之一,以及缺陷的对准。这将在生长的B掺杂石墨烯中产生不对称的sublattice掺杂,从理论上讲,这将导致显着的带隙。
摘要这是先前评论的更新(Naumis et al 2017rep。prog。物理。80 096501)。考虑了线石墨烯和其他金属,绝缘,铁电,铁弹性,铁磁和多效2D材料的实验和理论进步。We surveyed (i) methods to induce valley and sublattice polarisation ( P ) in graphene, (ii) time-dependent strain and its impact on graphene's electronic properties, (iii) the role of local and global strain on superconductivity and other highly correlated and/or topological phases of graphene, (iv) inducing polarisation P on hexagonal boron nitride monolayers via strain, (v)通过应变,(VI)铁核2D材料(带有固有弹性(σ),电气(P)和磁性(M)极化,修饰过渡金属二色元化元素单层单层单层的光电特性,以及初期的2D多效中部和(VII)MoiréBirayflator flato seperer,以及其他分期型均型均匀的型号,并表现表现出可以通过旋转和剪切应变调整的铁从订单的系统。该更新具有可调二维量子旋转霍尔在德国,元素2D铁电抗性和2D多效性NII 2的实验实现。该文件是为了讨论单层中发生的效果的讨论,然后进行了有关BiLayers和
由于石墨烯中的近似自旋谷对称性,在电荷中立时石墨烯中的元素的基态是特定的su(4)量子 - 量子 - 量子 - 尺寸 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子 - 量子量。如果仅考虑库仑相互作用,则该铁磁铁可以提高自由度的自由度或等效到山谷伪旋转自由度。因此,选择的自由会受到明确打破SU(4)对称性的转基准能量尺度的限制,最简单的对称性是由zeeman效应给出的,该效应表达了磁场方向的旋转。此外,还可能由短距离相互作用或电子音波耦合引起谷对称性破坏术语。在这里,我们建立在相图上,该相图已由Kharitonov [Phys。修订版b 85,155439(2012)],以识别与这些类型的量子霍尔铁磁体兼容的不同天空。与铁磁体类似,电荷中立性的天空被中心的GR(2,4)Grassmannian描述,这使我们能够构造Skyrmion Spinors。然后,通过将其在变异方法中最小化的能量最小化,就其剩余的自由参数而言,这些不同的自由参数必须与距其中心较大距离的距离必须与屈光度的背景相兼容。我们表明,不同的天际象征类型在局部,sublattice分辨的,自旋磁化强度中具有明显的特征,在扫描键盘显微镜和光谱上原则上可以访问。
我们探讨了从“单一”辅助进化中获得的混合量子物质的通用性能,其中通过一轮局部测量和以空间偏见的测量为条件,通过一轮局部测量和局部统一操作来操纵量子至关重要的地面状态。所产生的混合量子状态的特征是局部可观察物,混合状态熵和纠缠负性之间的长距离相关性改变了。通过调用(1+1)维度中的粗粒状,连续描述单杆适应,我们发现广泛的混合状态熵表现出子领域的恒定校正(γ),而纠缠负性则可以与子分离大小进行对数,并具有子分离的大小,并具有系数(系数(α);α);两种常数都可以达到与任何关键量子基本状态中预期行为不同的通用值。我们以(i)一维Z 2×Z 2对称性保护拓扑(SPT)阶和对称性破裂状态以及(ii)稀疏的tomonaga-luttinger液体之间的临界点研究了这些特性。在前一种情况下,将SPT的一个sublattice解压缩的自适应演化可以产生一个关键的混合状态,其中α达到了一个统一值,这是原始状态下的一半。在后一种情况下,我们显示了适应性 - 在测量局部电荷后涉及自旋度自由度的反馈 - 修改长距离相关性,并通过确切的复制性磁场理论计算来确定α和γ与反馈强度连续变化。数值研究证实了这些结果。
是由最近报道的Trilayer LA 4 Ni 3 O 10在压力下的超导性的签名的动机,我们使用从头算和随机相近似技术全面研究了该系统。没有电子相互作用,NI D 3 z 2-r 2轨道显示通过op z轨道构成键合 - 抗抗反向和非键的分裂行为,这些轨道在La 4 Ni 3 O 10中诱导“ Trimer”晶格,类似于La 3 Ni 2 O 7的二聚体。费米表面由三个具有混合e轨道的电子纸组成,一个由D 3 z 2-r 2轨道组成的孔和电子袋组成,这表明Ni两轨最小模型。另外,我们发现由于M¼ðπ之间的部分嵌套,在S波通道中诱导了超导配对。以γ¼d为中心的费米表面的中心口袋和部分; 0Þ点。随着电子密度n的变化,S不稳定性保持领先,其配对强度显示出最大n¼4左右的Domelike行为。2(〜6。7%电子掺杂)。超导不稳定的消失在与新的1313堆叠La 3 ni 2 O 7中相同的电子密度消失,这与三层sublattice产生的孔口袋消失有关,这表明La 3 Ni 2 O 7的高t c超导性不源自trililayer and Monolayer and Monolayerererererereraner和monlayerererererereraner和mon。此外,我们在LA 4 ni 3 O 10中确认了拟议的自旋状态,其平面内(π,π)顺序(π,π)和底部Ni层之间的抗铁磁耦合,中间层中的旋转零。
摘要:胶体纳米晶体 (NC) 的自组装在固态材料的多尺度工程中具有巨大前景,通过这种技术,原子工程 NC 构件被排列成具有协同物理和化学性质的长程有序结构 超晶格 (SL)。迄今为止,报告主要集中在球形 NC 的单组分和二元系统上,产生的 SL 与已知的原子晶格同构。通过组合各种形状的 NC,可以预期获得远远超出已知晶格范围的更大结构空间。本文报道了空间稳定的 CsPbBr 3 纳米立方体 (5.3 纳米) 与圆盘状 LaF 3 NC (直径 9.2 - 28.4 纳米,厚度 1.6 纳米) 共组装成二元 SL 的过程,产生了具有 AB、AB 2 、AB 4 和 AB 6 化学计量的六柱状结构,这在之前和我们的参考实验中均未观察到,参考实验中使用由球体和圆盘组成的 NC 系统。本文使用填充密度计算合理化了立方体形状的这种惊人效果。此外,在尺寸相当的纳米立方体(8.6 纳米)和纳米盘(6.5 纳米、9.0 纳米、12.5 纳米)系统中,还观察到了其他非柱状结构,例如 ReO 3 型 SL,其特征是盘和立方体的紧密混合和面对面排列,纳米立方体的面心立方或简单立方亚晶格,以及每个晶格位置有两个或三个盘。层状和 ReO 3 型 SL 采用大型 8.6 纳米 CsPbBr 3 NC,表现出集体超快光发射 超荧光 的特征,源自激发态发射偶极子的相干耦合。关键词:胶体纳米晶体、纳米晶体形状、自组装、二元超晶格、电子显微镜、卤化铅钙钛矿、超荧光 I
烧结(DC)和两者使用原位反应的变体已成为产生相对密度以上相对密度的相纯UHTC的偏爱烧结方法。15–19对于IV组的烧结(0.65 <ρ相对<0.90)的中间阶段,据报道,据报道的激活能量范围为140至695 kJ/mol的Zrb 2,56至774 kJ/mol的TIB 2,以及96 kJ/mol的HFB 2。5,20–23总体而言,研究得出的结论是,尽管激活能的值应仅取决于致密化的机械性,但更细的初始粒径和增加的压力降低了激活能量。对于烧结的中间阶段,Lonergan报道说,晶界扩散是在2000℃低于2000℃的反应热的Zrb 2中的主要机制,其激活能为241 kj/mol,但晶状体扩散成为2000°C的主要机制,其激活能量为695 kJ/mol。21 Kalish研究了HFB 2的极端压力(800 MPa)下的致密性最后阶段的动力学,并报告了激活能为96 kJ/mol。kalish建议该机制可能是脱位流,因为激活能量足够低,但没有提供其他机械的证据。kalish最终得出结论,在HFB 2的致密阶段,HF的B或晶界扩散是HF的晶界扩散是主要机制。5从那时起,几项研究报告了硼化物中的脱位运动。Koval'Chenko得出结论,脱位运动受到金属sublattice中金属物种的自扩散的限制。2424–29 Koval'Chenko螺柱的钼和钨硼的致密动力学,并报道激活能量是压力的独立性,这表明脱位滑行过程。28 bhakhri估计了使用压痕实验的154±96 kJ/mol中ZRB 2中脱位运动的活化能,并假设汉堡矢量沿着<1 0 0 0 0>方向。
Digest纳米材料和生物结构杂志卷。 div>19,编号2,2024年4月至6月,第2页。 669-677 Characterization of Gaas and Gaas/Cr/Gaas Interfacial Layers Fabricated Via Magnetron Sputtering on Silicon (100) Camilo Pulzara-Mora A, José Doria-Andrade B, Roberto Bernal-Correa C, Andrés Rosales-Rivera D, Álvaro Pulzara-Mora *A A Laboratory of Nanoestructure Semiconductor,哥伦比亚国立大学的精确和自然科学学院,曼尼扎尔总部,170004,哥伦比亚。 div>。 div>b物料学实验室,工程学院,帕斯卡尔·布拉沃,麦德林,哥伦比亚哥伦比亚C研究所,Orinoquía研究所,哥伦比亚国立大学,Orinoquia总部,Orinoquia总部,公里9VíaArauca-CañoLimón,Arauca哥伦比亚,曼尼扎莱斯总部,曼尼扎莱斯,曼尼扎尔,曼尼扎尔170004,哥伦比亚。 div>获得半导体材料的获得和研究数十年来一直是感兴趣的主题。 div>但是,在应用时允许更大多功能性的替代方案尚未被阐明,例如包含子过渡金属。 div>在这项工作中,我们报告了由R.F.制备的GAAS和GAAS/CR/GAAS层获得的。 div>磁铁溅射在Si(100)底物上分别改变中间Cr层的沉积时间T = 5分钟和10分钟。 div><进行横截面中的Divanning电子显微镜,以确定GAAS和GAAS/CR/GAAS膜的生长模式。 div>在这种情况下,CR原子可以在金属sublatice中代替甘露原子或通过沿整个层厚度的横截面中的能量色散光谱(EDS)确定了GAAS/CR/GAAS薄膜中元素的百分比。X射线衍射和微拉曼光谱在室温下测量,以分析CRA和GACR二进制相的形成,通过跨层间的扩散。最后,我们得出结论,该技术可能使用该技术获得具有CR包含的半导体合金。(2024年1月22日收到; 2024年4月26日接受)关键词:磁控溅射,拉曼光谱,X射线1。引言在光电行业中使用III-V半导体材料的使用增加了近年来科学界的重大挑战[1,2]。有必要降低生产成本,提高效率并发现设备设计,以使其应用程序更具多功能性。目前正在进行的研究的一个例子涉及与CR,FE,MN等过渡金属等过渡金属掺杂这种类型的半导体。这种耦合允许物理特性的结合,因此打开了各种适用性[3,4]。在GAAS(砷化甘蓝)的情况下,已经存在一个实质性的科学和实验知识库[5],使其成为与提到的一些元素耦合的潜在候选者[6,7]。铬是III-V半导体(例如GAN和GAAS)中发展室温铁磁性的转型金属[11-13]。Arsenide是一种半导体化合物,在室温下直接带隙能量为1.42 eV,由于其各种应用作为红外光发射器,高效太阳能电池(η〜29%)[8],现场效果晶体管[9],以及在室温下的电源辐射检测[10],广泛用于当前技术。
(1) Lincot, D.;Guillemoles, JF;Taunier, S.;Guimard, D.;Sicx-Kurdi, J.;Chaumont, A.;Roussel, O.;Ramdani, O.;Hubert, C.;Fauvarque, JP;Bodereau, N.;通过电沉积制备黄铜矿薄膜太阳能电池。太阳能 2004,77,725-737。 (2) Todorov, T.;Mitzi, DB 光伏器件黄铜矿吸光层的直接液体涂层。欧洲无机化学杂志 2010,1,17-28。 (3) Jäger-Waldau, A. 在《光伏实用手册》中 McEvoy, A;Markvart, T.;Castañer, L. 编辑;Academic Press,2012; IC-4 章,第 373-395 页。(4)Cao, Q.;Gunawan, O.;Copel, M.;Reuter, KB;Chey, SJ;Deline, VR;Mitzi, DB Cu(In, Ga)Se 2 黄铜矿半导体中的缺陷:材料特性、缺陷态和光伏性能的比较研究。Adv. Energy. Mater. 2011,1,845-853。(5)Rockett, AA 黄铜矿太阳能电池的现状和机遇。Curr. Opin. Solid State Mater. Sci. 2010,14,143-148。(6)Fiechter, S.;Tomm, Y.;Kanis, M.;Scheer, R.;Kautek, W. 论黄铜矿型 CuInS 2 的均质区、生长模式和光电特性。 Phys. Status Solidi B 2008 , 245, 1761-1771。(7) Marron, DF; Cánovas, E.; Levy, MY; Marti, A.; Luque, A.; Afshar, M.; Albert, J.; Lehmann, S.; Abou-Ras, D.; Sadewasser, S.; Barreau, N. 对基于黄铜矿的中间带材料纳米结构方法的光电评估。Sol. Energy Mater. Sol. Cells 2010 , 94, 1912-1918。(8) Kerroum, D.; Bouafia, H.; Sahli, B.; Hiadsi, S.; Abidri, B.; Bouaza, A.; Timaoui, MA 压力对锌硅二砷化物 ZnSiAs 2 -黄铜矿的机械稳定性和光电行为的影响:DFT 研究。Optik 2017,139,315-327。(9)Ohmer, MC;Pandey, R. 黄铜矿作为非线性光学材料的出现。MRS Bull。1998,23,16-22。(10)Kildal, H.;Mikkelsen, JC 黄铜矿 AgGaSe 2 中的非线性光学系数、相位匹配和光学损伤。Opt. Commun. 1973,9,315-318。(11)Abrahams, SC; Bernstein, JL 压电非线性光学 CuGaS 2 和 CuInS 2 晶体结构:AIB III C 2 VI 和 A II B IV C 2 V 型黄铜矿中的亚晶格畸变。J. Chem. Phys. 1973 ,59,5415-5422。(12)Boyd, G.;Buehler, E.;Storz, F.;Wernick, J. 三元 A II B IV C 2 V 黄铜矿半导体的线性和非线性光学特性。IEEE J. Quantum Electron. 1972 ,8,419-426。(13)Feng, W.;Xiao, D.;Ding, J.;Yao, Y. I-III-VI 2 和 II-IV-V 2 黄铜矿半导体中的三维拓扑绝缘体。Phys. Rev. Lett. 2011, 106, 016402. (14) 赵YJ; Zunger, A. 自旋电子 CuM III X 2 VI 黄铜矿半导体中 Mn 取代的位点偏好。物理。 Rev. B 2004 , 69, 075208。 (15) Koroleva, LI; Zashchirinskiĭ,DM;卡帕耶娃,TM;马伦金,SF;费多尔琴科,四世;希姆恰克,R.;克鲁祖曼斯卡,B.;多布罗沃尔斯基,V.;基兰斯基,L.锰掺杂的 ZnSiAs 2 黄铜矿:一种用于自旋电子学的新型先进材料。Phys. Solid state 2009,51,303-308。(16)Shay, J. L;Wernick, JH 三元黄铜矿半导体:生长、电子特性和应用。英国牛津,帕加马出版社,1975 年。(17)Medvedkin, GA;Ishibashi, T.;Nishi, T.;Hayata, K.;Hasegawa, Y.;Sato, K. 新型稀磁半导体 Cd 1-x Mn x GeP 2 的室温铁磁性。Jpn. J. Appl. Phys. 2000,39,L949。