进行性核上麻痹的最常见临床表型是理查森综合征,其特征是左旋多巴无反应的对称性帕金森氏症,垂直的垂直上近核凝视性麻痹,早次跌倒和认知障碍。确定进行性核能性麻痹的脑萎缩序列可以提供对疾病进展机制的重要见解,并指导患者的层次和监测临床试验。我们使用了基于概率事件的模型,该模型适用于大型国际队列中的横截面结构MRI扫描,以确定临床诊断的进行性上核上麻痹的脑萎缩序列。在研究中,总共有341名理查森综合症(255个有12个月的随访成像)和260个对照。我们使用了12个月的随访MRI扫描以及经过验证的临床评分评分(进行性超核瘫痪评分量表)的组合,以证明基于事件的模型的分期系统的纵向一致性和实用性。基于事件的模型估计,最早的萎缩发生在脑干和皮层下区域,随后尾部尾部尾部进入了小脑小脑花梗和深小脑核,并呈上质皮质。皮质萎缩的序列沿后方向前进,然后从岛块,然后是额叶,然后扩散到颞叶,顶壁和最终的枕叶。这种体内订购与进行性核上麻痹后验尸后神经病理学分期相一致,并且在交叉验证下非常健壮。使用来自12个月的随访扫描中的纵向信息,我们证明了受试者在此时间间隔内移动到后期,从而支持模型的有效性。此外,临床严重程度(进行性超核瘫痪评分量表)和疾病持续时间均与预测的基于事件的模型阶段显着相关(P,0.01)。我们的结果提供了对进行性上核瘫痪性麻痹的萎缩进展顺序的新见解,并提供了潜在的实用性,可以在基于疾病阶段和轨道疾病进展的临床试验中对患有这种疾病的人进行分层。
进行性核上性麻痹最常见的临床表型是理查森综合征,其特征是对左旋多巴无反应的对称性帕金森病,伴有垂直核上性凝视麻痹、早期跌倒和认知障碍。目前尚无对进行性核上性麻痹疾病病理生理学完整序列的详细了解。确定进行性核上性麻痹的脑萎缩序列可以为疾病进展机制提供重要见解,并指导患者分层和临床试验监测。我们将基于事件的概率模型应用于大型国际队列的横断面结构 MRI 扫描,以确定临床诊断的进行性核上性麻痹理查森综合征的脑萎缩序列。共有 341 名理查森综合征患者(其中 255 人接受了 12 个月的随访影像学检查)和 260 名对照者被纳入研究。我们结合使用了 12 个月的随访 MRI 扫描和经过验证的临床评分(进行性核上性麻痹评分量表)来证明基于事件的模型分期系统的纵向一致性和实用性。基于事件的模型估计最早的萎缩发生在脑干和皮质下区域,然后向尾部进展到小脑上脚和小脑深部核,并向前端进展到皮质。皮质萎缩的顺序从前到后,从岛叶开始,然后是额叶,最后扩散到颞叶、顶叶,最后是枕叶。这种体内顺序与进行性核上性麻痹的死后神经病理学分期相符,并且在交叉验证下是稳健的。利用 12 个月随访扫描的纵向信息,我们证明受试者在此时间间隔内持续进入后期阶段,支持了该模型的有效性。此外,临床严重程度(进行性核上性麻痹评分量表)和疾病持续时间与预测的受试者基于事件的模型阶段显著相关(P ,0.01)。我们的研究结果为进行性核上性麻痹的萎缩进展顺序提供了新的见解,并提供了潜在的实用性,可根据疾病阶段对进入临床试验的此病患者进行分层,以及跟踪疾病进展。
由儿童健康研究所/伦敦大学学院用户于 2022 年 4 月 26 日从 https://academic.oup.com/braincomms/advance-article/doi/10.1093/braincomms/fcac098/6568415 下载
全面了解神经退行性疾病不同阶段所涉及的病理机制是预防和改善疾病治疗的关键。患病大脑中的基因表达改变是有关受病理影响的生物过程的潜在信息来源。在这项工作中,我们对被诊断为阿尔茨海默病 (AD) 或进行性核上性麻痹 (PSP) 的人类患者与淀粉样变性和 tau 蛋白病的动物模型大脑中的基因表达改变进行了系统比较。使用系统生物学方法揭示与基因表达改变相关的生物过程,我们可以精确地指出与 tau 蛋白病/PSP 和淀粉样变性/AD 更密切相关的过程。我们发现与免疫炎症反应相关的基因表达改变在年轻人中占主导地位,而与突触传递相关的基因表达改变主要在老年 AD 患者中观察到。然而,在 PSP 中,与免疫炎症反应和突触传递相关的变化重叠。在 AD 和 PSP 大脑中观察到的这两种不同模式分别在淀粉样变性和 tau 蛋白病的动物模型中得到了很好的再现。此外,在 AD 中,而不是在 PSP 或动物模型中,与 RNA 剪接相关的基因表达改变非常普遍,而与髓鞘形成相关的基因表达改变在 AD 和 PSP 中都很丰富,但在动物模型中却没有。最后,我们在细胞类型特异性共表达模块中确定了 12 个 AD 和 4 个 PSP 遗传风险因素,从而有助于揭示这些基因在发病机制中的可能作用。总之,这项工作有助于揭示受淀粉样蛋白和 tau 病理影响的潜在生物学过程以及它们如何导致 AD 和 PSP 的发病机制。
摘要 对疼痛的共情涉及共同的情感反应和自我与他人的区分。在本研究中,我们探讨了一个备受争议的问题:之前与情感共享相关的神经反应是否可能来自对突出的情感表现的感知。此外,我们研究了涉及情感共享和自我与他人区分的大脑网络如何支撑我们对被认为是真实或假装的疼痛的反应(而事实上,两者都是出于实验控制的原因而表现出来的)。我们发现,在观看真实和假装的疼痛面部表情视频片段的参与者中,与情感共享(前岛叶 [aIns] 和前中扣带皮层)以及情感自我与他人区分(右上缘回 [rSMG])相关的区域激活程度更强。然后,我们使用动态因果模型评估了这两种情况下右侧 aIns 和 rSMG 之间的神经动态。这揭示了与假装疼痛相比,真实疼痛对 aIns 到 rSMG 连接的抑制作用降低。仅对于真正的疼痛,大脑到行为的回归分析强调了这种抑制效应与疼痛评级以及共情特征之间的联系。这些发现意味着,如果别人的痛苦是真实的,因此需要适当的共情反应,大脑中的神经反应确实似乎与情感分享有关,并且自我与他人的区分会发挥作用,以避免共情过度唤醒。相反,如果其他人只是假装痛苦,他们痛苦表情的感知显着性会导致神经反应下调,以避免不适当的情感分享和社会支持。
通过单击工具栏中的图标,您可以查看通量的首选项。您可以移动滑块以设置屏幕的构图。您可以看到我始终将我的矿山设置为更黄。它知道我在凌晨6:30醒来,并假定我的就寝时间是晚上10:30。您可以看到,当我们接近邮政编码的日落时,它将改变我的屏幕的组成,甚至在过去的睡前时更加急剧。
摘要 在 Pt 3 Ti(111) 合金表面生长的高度有序氧化钛薄膜被用于纳米 W 3 O 9 团簇的受控固定和尖端诱导电场触发的电子操控。根据操作条件,产生了两种不同的稳定氧化物相 z'-TiO x 和 w'-TiO x 。这些相对 W 3 O 9 团簇的吸附特性和反应性有很大的影响,这些团簇是在超高真空条件下 WO 3 粉末在复杂的 TiO x /Pt 3 Ti(111) 表面上热蒸发形成的。发现物理吸附的三钨纳米氧化物是位于金属吸引点上的孤立单个单元或具有 W 3 O 9 封盖的六边形 W 3 O 9 单元支架的超分子自组装体。通过将扫描隧道显微镜应用于 W 3 O 9 –(W 3 O 9 ) 6 结构,单个单元经历了尖端诱导还原为 W 3 O 8 。在高温下,观察到大型 WO 3 岛的聚集和生长,其厚度被严格限制为最多两个晶胞。这些发现推动了使用操作技术在表面上实现模板导向成核、生长、网络化和功能分子纳米结构的电荷状态操控的进展。
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个
制造商报告的; B纯化步骤简单地除去了金属杂质并改变了表面功能。对长度没有显着影响; C根据AFM图像分析,平均长度为0.4μm。
摘要 抑制性自突触是大脑中 GABA 能中间神经元中自我支配的突触连接。新皮质层中的自突触尚未得到系统研究,它们在不同哺乳动物物种和特定中间神经元类型中的功能知之甚少。我们研究了深部脑手术切除的人类新皮质组织 2/3 层 (L2/3) 中表达 GABA 能小白蛋白的篮状细胞 (pvBC),并以小鼠作为对照。大多数 pvBC 在两个物种中都表现出强大的 GABA A R 介导的自我支配,但在非快速放电的 GABA 能中间神经元中,自突触很少见。光学和电子显微镜分析显示 pvBC 轴突支配着自己的胞体和近端树突。 GABAergic 自我抑制传导在人类和小鼠 pvBC 中相似,并且与从 pvBC 到其他 L2/3 神经元的突触传导相当。自突触传导在 pvBC 中延长了尖峰后的躯体抑制并抑制了重复放电。在超颗粒新皮质的人类和小鼠 pvBC 中,周围躯体自突触抑制很常见,它们在那里有效地控制 pvBC 的放电。