摘要。风电场的性能受到涡轮 - 摩擦相互作用的显着影响。通常,通过测量其Nacelle风速或使用涉及跨转子盘的一组离散点的数值方法来评估其Nacelle风速或通过评估其转子平均风速来对每个涡轮机进行量化。al-尽管文献中存在各种点分布,但我们引入了两种分析表达式,用于整合非轴对称的高斯唤醒,这解释了上游Turbine Yaw和Wind Veer产生的唤醒拉伸和剪切。分析溶液对应于将目标涡轮机建模为圆形执行盘和等效的矩形执行器盘。衍生的表达式具有多功能性,可容纳尾流源(上游涡轮机)和目标涡轮机之间的任何偏移和轮毂高度差。验证对转子平均的数值评估使用2000个下游位置的2000平均点置于尾流源的平均点,这表明在极端的veer条件下,在小/中度的逆转效应下,在小/中度的vever效应下,在小/中度的vever效应下两种分析溶液都具有出色的一致性。与使用16个平均点的矢量数值平均值相比,两种态解决方案在计算上都是有效的,而圆盘溶液的速度较慢约为15%,而矩形盘溶液的速度约为15%。此外,分析表达式被证明与多个唤醒叠加模型兼容,并且是可区分的,为推导分析梯度提供了基础,这对于基于优化的应用程序可能是有利的。
“这项研究强调了尽早培养健康的屏幕使用习惯的重要性,”多伦多大学社会工作因子助理教授助理教授凯尔·甘森(Kyle Ganson)博士说。“未来的研究可以帮助我们更好地了解将屏幕使用与躁狂症状联系起来的行为和大脑机制,以帮助预防和干预工作。”
编辑:G.F. giudice我们证明了手性对称性破坏发生在具有颜色和𝑁𝑁风味的类似QCD的理论的联合制度中。我们的证明是基于一种新的策略,称为“下降”,通过该策略,hooft异常匹配和持续的质量条件的解决方案是由𝑁 -1的风味构建的,它是由带有𝑁𝑁味的理论的一种风味构建的,而w却是固定的。通过诱导,在Cofining Sengime中,手性对称性破裂已被证明,其中𝑝𝑝是最小的质量因子𝑁𝑐𝑁。在将夸克质量发送到ifinity时,可以将证据扩展到𝑁<<𝑝𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛𝑚𝑖𝑛我们的结果不依赖于无质量结合状态的假设,而不是它们是颜色的黑龙。
带有轨道角动量(OAM)的涡流梁对于高容量通信和超分辨率成像具有重要意义。但是,芯片上的自由空间涡旋(FVS)和等离子涡旋(PVS)之间存在巨大差距,而主动操纵以及更多的通道中的多路复用已成为紧迫的需求。在这项工作中,我们演示了由螺旋等离子元素层,液晶晶体(LC)层和螺旋介质元素层组成的Terahertz(THZ)级联的MetadeVice。通过旋转轨道角动量耦合和光子状态叠加,PV和FV的平均模式纯度平均产生超过85%。由于螺旋跨面的反转不对称设计引起的,实现了OAM的均衡对称性破裂(拓扑电荷数不再以正面和负为正面发生,但所有这些都是正面的),产生了6个与脱钩的旋转状态和近距离/远距离位置相关的6个独立通道。此外,通过LC集成,可以实现动态模式切换和能量分布,最终获得多达12个模式,调制比率高于70%。这种主动调整和多渠道多路复用元点在PVS和FVS之间建立了桥梁连接,在THZ通信,智能感知和信息处理中显示出有希望的应用。
Kathrin Ohla 1,2,3, †, Maria G. Veldhuizen 4, †, Tomer Green 5, Mackenzie E. Hannum 6, Alyssa J. Bakke 3, Shima T. Moein 7, Arnaud Tognetti 8, Elbrich M. Postma 9, Robert Pellegrino 6, Daniel Liang-Dar Hwang 10, Javier Albayay 11, Sachiko Koyama 12,Alissa A. Nolden 13,Thierry Thomas-Danguin 14,Carla Mucignat-Caretta 15,Nick S. Menger 16,Ilja Croijmans 17,LinaÖztürk4,HüseyinYanık4,HüseyinYanık4,Denis Pierron 18,Denis Pierron 18,Veronica Perecaia nune nune nune nune nune nune nune nune nune nunez-pine nune nune nune nunez-pine, 19,David Gillespie 21,Michael C. Farruggia 22,Cinzia Cecchetto 15,Marco A. Fornazieri 23,Carl Philpott 24,Vera Voznessensnkaya 25,Keiland W. Cooper W. Cooper 26,Paloma Rohlfs Dominguez 27 Elisabeth M. Weir 3,Dear Exten 3,Paule V. Joseph 31,Valentina Parma 6,John E. Hayes 3#,Masha Y. Niv 5#Kathrin Ohla 1,2,3, †, Maria G. Veldhuizen 4, †, Tomer Green 5, Mackenzie E. Hannum 6, Alyssa J. Bakke 3, Shima T. Moein 7, Arnaud Tognetti 8, Elbrich M. Postma 9, Robert Pellegrino 6, Daniel Liang-Dar Hwang 10, Javier Albayay 11, Sachiko Koyama 12,Alissa A. Nolden 13,Thierry Thomas-Danguin 14,Carla Mucignat-Caretta 15,Nick S. Menger 16,Ilja Croijmans 17,LinaÖztürk4,HüseyinYanık4,HüseyinYanık4,Denis Pierron 18,Denis Pierron 18,Veronica Perecaia nune nune nune nune nune nune nune nune nune nunez-pine nune nune nune nunez-pine, 19,David Gillespie 21,Michael C. Farruggia 22,Cinzia Cecchetto 15,Marco A. Fornazieri 23,Carl Philpott 24,Vera Voznessensnkaya 25,Keiland W. Cooper W. Cooper 26,Paloma Rohlfs Dominguez 27 Elisabeth M. Weir 3,Dear Exten 3,Paule V. Joseph 31,Valentina Parma 6,John E. Hayes 3#,Masha Y. Niv 5#
在具有直接循环极化发射的发光二极管中,实现高电发光的非对称因子和高外部量子效率同时在发光二极管中具有挑战性。在这里,我们表明,基于手性钙钛矿量子点,可以同时在发光二极管中同时实现高发光的不对称因子和高外部量子效率。特定的,手性的钙钛矿具有手性诱导的自旋选择性可以同时用作局部的辐射辐射推荐中心,用于自旋极化载体的循环极化载体,从而抑制了旋转的放松,从而抑制了旋转的旋转,并改善了旋转的旋转,并促进了旋转的旋转效果,并促进了旋转的旋转效果,旋转了旋转的效果,供应型旋转效果。属性,以便可以促进产生设备的授权电源。我们的设备同时表现出高电致发光的非对称因子(R:0.285和S:0.251)和高外部量子效率(R:16.8%和S:16%),证明了它们在构建高表现性手性光源方面的潜力。
防止感染传播的策略包括社会疏远和疫苗的开发。这些需要对疾病的详细了解。关于Covid-19有一些基本问题,我们迫切需要答案,包括:1。Covid-19在感染期间或呈阳性的covid-19测试多久出现,而没有任何疾病迹象?2。我们可以可靠地测试感染或通过血液检查疫苗接种后对COVID-19的免疫力吗?3。感染后多长时间会持续多久?要回答这些问题,我们需要了解Covid-19症状,感染的签名测试和免疫测试的联系。研究人员将在2020年4月开始在布里斯托尔皇家医院急诊室的医生和护士中研究所有这些事情。
普通英语的摘要背景和研究目的是纤维肌痛综合征(FMS)的原因,这是一种广泛的慢性(持久)疼痛状况,目前尚不清楚。治疗通常无效,许多患者遭受无屈服的疼痛而没有缓解的疼痛。FMS与其他症状有关,包括在不同温度下的疼痛变化,应对身体各个部位的压力,肠子问题,睡眠不良,疲劳和记忆问题的疼痛。患者通常会因这些无法解释的症状而感到困惑和困扰。该研究小组的最新研究表明,许多患者的血液中有称为自身抗体的物质,引起FMS症状。这些自身抗体还会影响患者最舒适的温度。,但目前没有足够的证据使医生能够告知患者FMS的温度依赖性的普遍性。本研究旨在调查患者对自己最佳温度的看法,以及温度的变化如何影响他们的其他FMS症状及其对压力的敏感性。这项研究的结果以及先前的实验室测试的结果将使医生能够更好地解释症状对患者的温度依赖性。将患者的症状置于背景下,并了解其他患有相同疾病的患者的状况应减少患者的困扰。
隶属关系1。荷兰尼杰梅根大脑,行为和认知研究所2.语言和遗传学系,荷兰Nijmegen,Max Planck心理语言学研究所。3。鼠标成像中心,生病儿童医院,多伦多,安大略省,M5T 3H7,加拿大4。美国马萨诸塞州波士顿哈佛医学院遗传学系。 5。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 6。 美国马萨诸塞州波士顿哈佛医学院遗传学系。 7。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 8。 哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。 9。 牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。 荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。 11。 医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根美国马萨诸塞州波士顿哈佛医学院遗传学系。5。美国马萨诸塞州波士顿的杨树和妇女医院病理学系。6。美国马萨诸塞州波士顿哈佛医学院遗传学系。 7。 美国马萨诸塞州波士顿的杨树和妇女医院病理学系。 8。 哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。 9。 牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。 荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。 11。 医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根美国马萨诸塞州波士顿哈佛医学院遗传学系。7。美国马萨诸塞州波士顿的杨树和妇女医院病理学系。8。哈佛大学哈佛大学,哈佛大学,美国马萨诸塞州剑桥。9。牛津大学,牛津大学牛津大学,牛津郡,牛津郡,牛津大学,奥克斯39du,英国10。荷兰尼杰梅根拉德布德大学医学中心人类遗传学系。11。医学成像系,拉德布德大学医学中心,邮政信箱9101,荷兰尼亚梅根