抽象的糖尿病神经病是1型(T1DM)和2型糖尿病(T2DM)的最常见并发症之一,并且comly表现为远端对称多重神经病(DSPN)。尽管有证据表明与T1DM和T2DM相关的DSPN是独立的实体,但我们对糖尿病DSPN的大多数知识源自针对2型糖尿病的研究。这项系统评价概述了T1DM中DSPN的当前证据,包括其流行病学,病理生理和临床特征以及主要诊断测试结果。本综述包括182个临床和临床前研究。结果表明,与T2DM相比,DSPN在T1DM中的并发症不那么频繁,并且与T1DM相关的DSPN发育的独特病理学机制具有高血糖作为主要的决定性。T1DM相关的DSPN比疼痛症状更常见于疼痛症状,其神经性疼痛患病率较低。明显的临床表现似乎是较高的纤维相关临床体征(例如,踝关节反射减少和振动性低音)的较高流行率,在较小程度上,小纤维损伤(例如,热或PINPRICK HARDPRICK HYBORESTIIA)。这些发现总体上表明,大型纤维受损在与T1DM相关的DSPN的临床情况下起着主要作用。然而,小型纤维诊断测试在检测早期神经损伤时表现出很高的诊断准确性,并且可能是用于疾病监测和筛查的合适诊断工具。
当不对称连接双门MOSFET制造为SIO 2 /High-K介电堆积的栅极氧化物时,研究了开关电流比的变化。高介电材料具有降低短通道效应的优势,但是由于带偏移的偏移量减少和使用硅的界面性能较差,栅极寄生电流的上升已成为一个问题。为了克服这一缺点,使用了堆叠的氧化膜。电势分布是从柱道方程式获得的,阈值电压是从第二个衍生方法计算得出的,以获取循环。结果,该模型与其他论文的结果一致。随着高介电材料的介电性的增加,开关电流比率增加,但在20或更多的相对介电常数下饱和。开关电流比与上和下高介电材料厚度的算术平均值成比例。SIO 2显示了10 4或更低的开关电流比率,但TIO 2(K = 80)的On-Own电流比增加到10 7或更多。
。CC-BY-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2021 年 2 月 9 日发布了此版本。;https://doi.org/10.1101/2021.02.08.430296 doi: bioRxiv preprint
摘要:癌症是全球面临的沉重负担,发病率不断上升,抗癌药物耐药性不断增强。结构新颖的抗癌药物数量极其有限。它们给社会卫生系统带来了高昂的成本。最关键的所谓多药耐药性 (MDR) 是由跨膜电渗流泵引起的,该泵将具有各种结构的药物转运出癌细胞。发现多药耐药蛋白 (MRP) 1 型和 2 型在各种癌症中过表达。迫切需要这些电渗流泵的抑制剂。我们开发了新型非对称 1,4-二氢吡啶作为癌症相关 MRP 1 型和 2 型的新型抑制剂。在各个癌细胞的细胞测定中评估了不同取代衍生物的结构依赖性活性并进行了讨论。确定了有希望的候选药物。一种候选药物被证明可以重新敏感顺铂耐药癌细胞系,从而克服抗癌药物耐药性。
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
通过直接数值模拟研究了经典对称水平对流,瑞利数 Ra 最大为 3 × 10 12 ,普朗特数 Pr = 0 . 1、1 和 10 。对于这两种设置,在热量和动量传输方面的全局量非常一致。与 Shishkina 和 Wagner(Phys. Rev. Lett.,第 116 卷,2016,024302)类似,我们发现努塞尔特数 Nu 与 Ra 的缩放转变在 10 8 ⩽ Ra ⩽ 10 11 的区域中。在临界 Ra 以上,流动经历稳态-振荡转变(小 Pr )或从稳态转变为具有分离羽流的瞬态(大 Pr )。振荡开始于 Ra Pr − 1 ≈ 5 × 10 9 处,分离羽流开始于 Ra Pr 5 / 4 ≈ 9 × 10 10 处。这些开始与缩放转变的开始相吻合。