摘要动物内脏器官的左右 (LR) 不对称是在胚胎发育过程中通过逐步过程建立起来的。虽然有些步骤是保留的,但动物之间采用不同的策略来启动身体对称性的破坏。在斑马鱼 (硬骨鱼类)、非洲爪蟾 (两栖动物) 和小鼠 (哺乳动物) 中,对称性破坏是由 LR 组织器处的定向流体流动引起的,这种流体流动由运动纤毛产生并被机械反应细胞感知。相比之下,鸟类和爬行动物不依赖纤毛驱动的流体流动。无脊椎动物(如蜗牛和果蝇)采用另一种不同的机制,其中对称性破坏过程由肌球蛋白和肌动蛋白分子相互作用下游获得的细胞手性支撑。在这里,我们强调了肌动球蛋白相互作用和平面细胞极性是动物之间多种 LR 对称性破坏机制的汇聚切入点。
时间倒转对称性的kagome超导性作者:汉宾·邓(Hanbin Deng)1 *,朱wei liu 1 *,Z。Guguchia2 *,Tianyu Yang 1 *,Jinjin liu 3,4 * Frédéric Bourdarot 9 , Xiao-Yu Yan 1 , Hailang Qin 7 , C. Mielke III 2 , R. Khasanov 2 , H. Luetkens 2 , Xianxin Wu 10 , Guoqing Chang 6 , Jianpeng Liu 11 , Morten Holm Christensen 12 , Andreas Kreisel 12 , Brian Møller Andersen 12 , Wen Huang 13 , Yue Zhao 1 ,Philippe Bourges 8,Yugui Yao 3,4,Pengcheng Dai 5,Jia-Xin Yin 1,7†隶属关系:1 Southern科学技术大学物理系,中国广东,深圳。2个宇宙旋转光谱实验室,保罗·施雷尔学院(CH-5232),瑞士维利根PSI。3量子物理中心,高级光电量子体系结构和测量(MOE)的主要实验室(MOE),北京理工学院,中国北京理工学院物理学院。4北京纳米植物和超细光电系统的北京关键实验室,中国北京理工学院。5美国休斯敦莱斯大学物理与天文学系77005,美国。6物理学和应用物理学,新加坡Nanyang Technological University的物理和数学科学学院,新加坡637371。7广东港量子科学中心大湾大湾地区(广东),中国深圳。8帕里斯 - 萨克莱大学,CNRS-CEA,LaboratoireLéonBrillouin,91191,法国Gif Sur Yvette,法国。9UniversitéGrenoble Alpes,CEA,INAC,MEM MDN,F-38000 Grenoble,法国。*这些作者为这项工作做出了同样的贡献。10理论物理学的CAS关键实验室,理论物理研究所,中国科学院,中国北京。11上海大学物理科学技术学院,上海2011年,中国。12尼尔斯·博尔研究所,哥本哈根大学,丹麦哥本哈根DK-2200。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。 †相应的作者。 电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。13深圳量子科学与工程研究所,南方科学技术大学,深圳518055,中国广东。†相应的作者。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。 在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。 在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。 在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。 在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。 内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。电子邮件:zhiweiwang@bit.edu.cn; yinjx@sustech.edu.cn超导性和磁性是拮抗量子物质,而在沮丧的局限性系统中,它们长期以来一直在考虑它们的交织。在这项工作中,我们利用扫描隧道显微镜和MUON旋转共振来发现Kagome Metal CS(V,TA)3 SB 5中的时间反转对称性超导性,在其中Cooper配对表现出磁性磁性,并由其调节。在磁道通道中,我们观察到完全差距超导状态下的自发内部磁性。在反磁场的扰动下,我们检测到Bogoliubov Quasi粒子在圆形载体上的时间反转不对称干扰。在该矢量中,配对差距自发调节,这与在点矢量处发生的成对密度波不同,并且与时间反向对称性破坏的理论提议一致。内部磁性,Bogoliubov准颗粒和配对调制之间的相关性为时间反向对称性的Kagome超导性提供了一系列实验线索。
相互作用的费米式系统的自发对称破坏是多体理论的主要挑战,这是由于新独立散射channels的扩散曾经在对称阶段不存在或退化。一个例子是由哈伯德模型的铁 /抗磁性破碎对称相(BSP)给出的,其中旋转横向和自旋宽量义通道中的顶点与计算能力的随之增加,以增加计算的计算能力。我们将非扰动的两粒子一致的方法(TPSC)传达出Hubbard模型中的磁相(2)磁相,提供了一种有效的方法,具有牢固的相关性。我们表明,在BSP中,易感性的总规则执行必须伴随着修改的间隙方程,从而导致订单参数,顶点校正和保留金色模式的间隙特征的恢复。然后,我们将理论应用于半填充的立方晶格中哈伯德模型的抗铁磁相。我们将双重占用和交错磁化的结果与使用图表的蒙特卡洛获得的结果进行了比较。我们证明了verx校正在降低希格斯在自旋长态敏感性中的准粒子激发差距方面的核心作用,从而产生了可见的希格斯模式。
多面体蛋白纳米局量作为疫苗平台取得了很大的成功(1-3),并且是生物制剂递送的有前途的车辆(4-7)。因此,人们对设计能够显示大量抗原或包装更大的更大的碳的更大且更复杂的结构有很大的兴趣。然而,常规的多面体是所有亚基都具有相同局部环境的最大闭合结构(8-11),因此访问更大,更复杂的封闭结构需要打破局部对称性。病毒通过在独特的环境(伪对称)(12)中放置化学不同但结构上相似的链条或利用相同的亚基来解决这个问题,或者利用在不同环境中采用不同构象的相同亚基(准对象)(13-15)(13 - 15),以访问具有更高的三角形(T)数量(13)结构(13),具有较大的亚基和互联剂和较大的子燃料。设计更大,更复杂的纳米焦点的一种有希望的途径是从定期的多面体纳米局(t = 1)开始,该纳米局(t = 1)是由对称的同构构构建块构建的,这些构建块的分离式环状布置是通过在假异构的异构体中代替这些构建块的隔离循环排列,然后通过将t = 4和大型结构与其他结构结合在一起,并与这些其他结构相结合。在这里,我们提供了这种设计方法的高级几何概述,以说明如何使用设计多样性和设计经济之间的权衡方向来实现不同的设计成果,正如在两篇随附的论文中实验证明的那样,Lee等人(16)和Dowling等人(17)。
量子频率梳子是对并行量子通信和处理的有用资源,因为自由度的稳健性和易于处理。在这项工作中,我们提出了一种基于纯无源光学组件(例如腔和光学延迟线路),生成宽带双音频梳子并控制其在粒子交换下的对称性的方法。我们使用集成的藻类半导体平台实验表明我们的方法,该平台产生了量子频率梳子,在室温下工作并遵守电气注射。我们显示了两光子频率梳的产生和操纵,并在500个峰上散布。这些结果为开发用于复杂量子操作的大规模平行和可重新发现系统的开发开辟了有趣的观点。
摘要:石墨烯和其他二维 (2D) 材料的出现为光电子应用提供了巨大的潜力。人们提出了各种器件结构和新颖的机制来实现具有独特检测特性的光电探测器。在这篇小综述中,我们重点介绍了自驱动光电探测器,它在物联网和可穿戴电子产品所需的低功耗甚至无功率运行方面具有巨大潜力。为了解决自驱动特性的一般原理,我们提出并阐述了基于二维材料的自驱动光电探测器对称性破缺的概念。我们讨论了自驱动光电探测器破坏对称性的各种机制,包括不对称接触工程、场诱导不对称、PN 同质结和 PN 异质结构。回顾并比较了基于这些机制的典型器件实例。对当前自驱动光电探测器的性能进行了严格评估,并讨论了目标应用领域的未来发展方向。
1美国加利福尼亚大学伯克利分校,美国加利福尼亚州94720,美国2 SLAC国家加速器实验室,美国加利福尼亚州斯坦福大学,美国3国际材料纳米结构中心,国家材料科学研究所,1-1 namiki,namiki,tsukuba,tsukuba,tsukuba 305-0044,日本305-0044,日本40.材料材料,国立材料,0044.日本5分子铸造,劳伦斯·伯克利国家实验室,伯克利,加利福尼亚州94720,美国6材料科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州94720,美国7化学科学司,劳伦斯·伯克利国家实验室,加利福尼亚州伯克利,加利福尼亚州伯克利,加利福尼亚州94720,美国 *