早期疫病(EB),由linariae(Neerg。)(SYN。A。tomatophila)Simmons是一种影响世界各地的西红柿(Solanum lycopersicum L.)的疾病,具有巨大的经济影响。本研究的目的是绘制与西红柿中EB耐药性相关的定量性状基因座(QTL)。F 2和F 2:3的映射种群由174条线组成,这些群体在2011年的自然条件下评估了NC 1celbr(抗性)×Fla。7775(易感性),并通过人工接种在2015年的温室中进行了自然条件评估。总共使用了375个具有特定PCR(KASP)测定法的基因分型父母和F 2种群的分析。表型数据的广泛遗传力估计为2011年和2015年的疾病评估分别为28.3%和25.3%。QTL分析显示,六个QTL与染色体2、8和11(LOD 4.0至9.1)上的EB抗性相关,解释了3.8至21.0%的表型变异。这些结果表明,NC 1celbr中EB耐药性的遗传控制是多基因的。这项研究可能有助于将EB抗性QTL和标记辅助选择(MAS)进一步绘制,以将EB耐药基因转移到精英番茄品种中,包括扩大番茄中EB耐药性的遗传多样性。
摘要背景:综合征免疫缺陷是一种遗传学和病理生理的先天性免疫误差。这些特征是多种额外的免疫临床症状和广泛的免疫表型,对感染的易感性增加,自身免疫现象,免疫失调,器官特异性病理和恶性肿瘤。目的:提高儿科医生对这一多方面的儿童原发性免疫缺陷的认识。方法:对同步免疫缺陷的遗传背景和临床症状以及当前的诊断方法和治疗方式的全面回顾。结果:从儿科医生的角度来看,这是对综合症免疫的早期诊断,这对于成功挽救生命的免疫校正通常是必不可少的,这是诊断性的挑战。提高了儿科医生认识到受影响儿童中这些疾病的体征和症状的意识至关重要。当前的分子生物技术和免疫遗传学的进展,导致实施新生儿筛查和新一代测序,为确定性诊断提供了信息的工具,并且在许多新疾病实体中,其定义和基因型 - 基因型 - 表型 - 透明型和相关性。结论:综合症原发性免疫缺陷儿童中的广泛临床表型需要儿科医生的特别注意,即在临床免疫学家的监督下,个性化的多叶度三级方法。©2021密码子出版物。由密码子出版。
摘要简介:随着癌症的发病率的增加,与癌症相关的药物费用正在上升,对于癌症患者的药物获取可能是一个严重的挑战。因此,提高已经可用药物的治疗功效的策略对于未来的医疗保健系统至关重要。涵盖的区域:在本综述中,我们研究了将血小板用作药物输送系统的潜力。我们搜索了PubMed和Google Scholar,以确定用英语编写的相关论文,并于2023年1月发表。作者的酌处权被包括在内,以反映对艺术状态的概述。专家意见:众所周知,癌细胞与血小板相互作用,以获得功能优势,包括免疫逃避和转移发展。这种血小板 - 癌症的相互作用已成为使用药物结合或结合药物结合的血小板或含有血小板膜的混合囊泡的众多基于血小板的药物递送系统的灵感,这些血小板结合了血小板膜与综合纳米载体。与免费药物或合成药物载体的治疗相比,这些策略可以改善药代动力学和选择性癌细胞的靶向。有多项研究表明使用动物模型提高了治疗功效,但是,在人类中没有测试过基于血小板的药物输送系统,这意味着该技术的临床相关性仍然不确定。
缩写:ACC,前扣带皮层;ACE2,血管紧张素转换酶2;ALFF,振幅低频波动;BBB,血脑屏障;BCT,脑连接工具箱;CC,胼胝体;CMB,脑微出血;COMMIT2,微结构信息纤维束成像2的凸优化模型;CSD,约束球面反卷积;DT,扩散张量;DW-MRI,扩散加权MRI;FA,分数各向异性;FBA,基于固定单元的分析;FC,纤维横截面;FD,纤维密度;FDC,纤维密度和横截面;FOD,纤维方向分布;FOV,视野;GM,灰质;ICU,重症监护病房;MD,平均扩散率; N Acc,伏隔核;NBS,基于网络的统计数据;OFC,眶额皮质;RT-PCR,实时逆转录聚合酶链反应;SyN,对称标准化;UF,钩束;WM,白质。* 通讯作者:意大利马里奥内格里 IRCCS 农业研究所生物医学工程系,Villa Camozzi via GB Camozzi, 3, 24020 Ranica (BG)。电子邮件地址:alberto.arrigoni@marionegri.it (A. Arrigoni)、sara.bosticardo@univr.it (S. Bosticardo)、gpezzetti@asst-pg23.it (G. Pezzetti)、sofia.poloni@ marionegri.it (S. Poloni)、serena.capelli@marionegri.it (S. Capelli)、 anapolitano@asst-pg23.it (A. Napolitano), andrea.remuzzi@unibg.it (A. Remuzzi), rzangari@ fontazionefrom.it (R. Zangari), llorini@asst-pg23.it (FL Lorini), msessa@asst-pg23.it (M. Sessa), alessandro.daducci@univr.it (A. 达杜奇),anna.caroli@marionegri.it (A. Caroli),sgerevini@asst-pg23.it(S. Gerevini)。
为了降低建筑物的能耗并限制其对环境的影响,近年来人们更加关注自适应建筑围护结构技术。智能材料结合了传感器和执行器的双重功能,是自适应技术的极佳盟友。它们的响应性通过配置为类似于自然生物皮肤的活界面的建筑围护结构促进了建筑物与环境之间的动态交互。本研究旨在探索智能材料的当前趋势和潜在应用,以定义环境自适应建筑围护结构的仿生解决方案。从指定自适应和响应解决方案之间的细微区别开始,使用 PRISMA 方法进行系统的文献综述,并进行文献计量分析,以确定关键词的主要常见出现、主要地理区域和主要来源。仅考虑对光、温度和水等环境触发因素作出反应的材料,以创建设计矩阵,丰富仿生自适应模型的实施阶段,并为研究人员提供用于仿生设计阶段的新有用工具。这项研究展示了如何使用智能材料来实现仿生外壳的响应功能,能够调节温度、屏蔽太阳辐射、过滤或对可变的环境参数做出反应。智能材料在建筑中的应用仍然有限,为未来的研究发现和建筑技术、生物学和材料科学之间的协同合作铺平了道路,并带来了更可持续的建筑环境。
缩写:AD,阿尔茨海默氏病; ALS,肌萎缩性侧索硬化症;应用,淀粉样前体蛋白; β,淀粉样β; BACE1,β位点淀粉样蛋白前体蛋白裂解酶1; BBB,血脑屏障; BCRP,乳腺癌抗性蛋白; BPS,双酚; BPA,双酚A; BPAF,双酚AF; BPB,Bisphenol B; BPF,双酚F; BPS,双足醇S; Ca 2 +,钙;猫,过氧化氢酶;中枢神经系统,中枢神经系统;中枢神经系统,皮质神经元; DA,多巴胺; DAT,多巴胺转运蛋白; PYSL2,二氢吡啶酶相关蛋白2; ECHA,欧洲化学局; EDC,内分泌破坏化学物质; ER,雌激素受体; GSK3β,糖原合酶激酶3β; HT-22,海马细胞系; IR,胰岛素受体; IRS,胰岛素受体底物; MAP2,微管相关蛋白2; MDA,疟原虫dehyde; MS,多发性硬化症; NFT,神经纤维纠缠; NOS,一氧化氮合酶; PD,帕金森氏病; PDI,蛋白二硫异构酶; RNase,还原核糖核酸酶; ROS,活性氧; SN,黑底尼格拉; SNC,黑质Nigra pars commacta;草皮,超氧化物歧化酶; SPS,老年斑块; SVHC,非常关注的实质; Th,酪氨酸羟化酶; TK,酪氨酸激酶; α -syn,α-苏核蛋白。*通讯作者。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。电子邮件地址:lipinglu@hznu.edu.cn(L. lu)。
定向能量沉积 (DED) 是一种很有前途的增材制造修复技术;然而,DED 易在薄壁部分产生表面波纹(驼峰),这会增加残余应力和裂纹敏感性,并降低疲劳性能。目前,由于缺乏具有高时空分辨率的操作监测方法,DED 中的裂纹形成机制尚不十分清楚。在这里,我们使用在线相干成像 (ICI) 来光学监测表面拓扑并原位检测开裂,结合同步加速器 X 射线成像来观察表面下裂纹的愈合和扩展。ICI 首次实现离轴对准(相对于激光器 24 ◦),从而能够集成到 DED 机器中,而无需更改激光传输光学系统。我们使用单元件 MEMS 扫描仪和定制校准板,实现了 ICI 测量值和激光束位置之间的横向(< 10 µ m)和深度(< 3 µ m)精确配准。 ICI 表面拓扑结构通过相应的射线照片(相关性 > 0.93)进行验证,直接跟踪表面粗糙度和波纹度。我们故意在镍基高温合金 CM247LC 的薄壁结构中植入隆起,在表面凹陷处局部诱发开裂。使用 ICI 现场观察到小至 7 µ m 的裂纹开口,包括亚表面信号。通过量化隆起和开裂,我们证明 ICI 是一种可行的现场裂纹检测工具。
类器官研究已成为生物医学中的一个变革性领域,重点是模仿人体器官的三维(3D)结构的体外发展。从各种类型的干细胞中得出,类器官紧密复制了人体器官结构和功能,比二维细胞培养物和动物模型具有显着优势,主要用于药物开发,组织工程和精度医学。最近的创新,包括生物制造技术的整合,已经显着提高了器官的结构复杂性和成熟度,从而扩大了其生物医学应用。器官培养的关键因素是利用细胞外基质(ECM),特别是脱细胞ECM水凝胶。这些水凝胶在器官生长和发育中有用,有效地模拟了体内环境,并支持各种器官系统的器官功能。将3D生物打印技术的集成到器官研究中标志着一种变革性的转变,这使得能够创建复杂的和CUS的结构。这篇综述表明,这些技术创新不仅彻底改变了组织工程和再生医学,而且还为药理学,疾病建模和个性化的医疗干预措施提供了巨大的影响。这些技术的综合整合为医学研究提供了一个有希望的未来,为疾病建模,药物发现和患者特异性治疗的发展铺平了道路,并标志着我们进入Preci Sion医学的新时代和个性化的医疗保健解决方案。
摘要:自 20 世纪 70 年代末诞生以来,RNA 疗法经历了显著的发展,为治疗以前难以治愈的疾病提供了新的可能性,从而彻底改变了医学。该领域涵盖多种方式,包括反义寡核苷酸 (ASO)、小干扰 RNA (siRNA)、微小 RNA (miRNA) 和信使 RNA (mRNA),每种方式都有独特的机制和应用。1978 年,人们发现合成寡核苷酸可以抑制病毒复制,从而奠定了该领域的基础,随后又在 1998 年发现了 RNA 干扰等关键进展。COVID-19 大流行标志着一个关键的转折点,展示了 mRNA 疫苗的潜力,并加速了人们对基于 RNA 的方法的兴趣。然而,仍然存在重大挑战,包括稳定性问题、向靶组织递送、潜在的脱靶效应和免疫原性问题。化学改性、输送系统和人工智能技术集成方面的最新进展正在解决这些挑战。该领域取得了显著的成功,例如脊髓性肌萎缩症和遗传性转甲状腺素介导的淀粉样变性治疗已获批准。展望未来,RNA 疗法有望成为个性化医疗方法,特别是在治疗遗传疾病和癌症方面。在技术创新和对 RNA 生物学的深入了解的推动下,该领域的持续发展表明其将对未来的医学治疗产生变革性影响。本综述旨在全面概述 RNA 疗法的发展、现状和前景。
淀粉样蛋白与三种主要疾病有关:患有阿尔茨海默氏病的Aβ,患有帕金森氏病的α-鼻核蛋白和2型糖尿病的氨基蛋白(又名IAPP)。这些淀粉样蛋白均形成可溶性低聚物,原纤维和跨膜离子通道。尽管已经确定了一些原纤维结构,但对毒性可溶性寡聚物和跨膜组件的结构的了解少得多。多态性是主要障碍。淀粉样蛋白组件是动态的。有时它们是无序的,形成组件的肽的数量通常会变化,即使它们的二级结构随时间和环境变化,而且通常同时存在多种形式。我们不知道哪些组件是至关重要的,哪些是致病性的。我们的团队试图通过开发突触核蛋白和β的原子尺度模型来填补这一空白。仅Aβ42同工型形成神经元中的离散通道。 GM1神经节剂增强了其毒性,这些神经节蛋白包括我们最新一代的β-桶模型。 我们的模型具有径向和通常的P2对称性,只有一个或两个肽构象。限制了可能的结构数量的约束。 它们与公认的β-桶结构理论一致,许多NMR,显微镜,生物物理和生化研究以及既定的分子建模原理和技术。 可行模型的数量很大,因为存在许多不同的组件。仅Aβ42同工型形成神经元中的离散通道。GM1神经节剂增强了其毒性,这些神经节蛋白包括我们最新一代的β-桶模型。我们的模型具有径向和通常的P2对称性,只有一个或两个肽构象。限制了可能的结构数量的约束。它们与公认的β-桶结构理论一致,许多NMR,显微镜,生物物理和生化研究以及既定的分子建模原理和技术。可行模型的数量很大,因为存在许多不同的组件。此外,我们正在建模Aβ42和α-突触核蛋白如何通过周围的突触传播过程中参与突触传播过程中融合孔的形成,并在周围的Snare Syn Aptotagmins施加膜张力并在复合物中进行复杂时大量扩展。