摘要:尽管RNA的下一代测序(NGS)广泛使用,但多个RNA核苷酸修饰的同时直接测序和定量映射仍然具有挑战性。质谱(MS)的测序可以直接序列所有RNA修饰,而无需限于特定的测序,但是它需要很少有TRNA可以提供的完美MS梯子。在这里,我们描述了一种MS梯子互补测序方法(MLC-SEQ),该方法避免了完美的阶梯要求,从而可以在单核苷酸精度下对全长异质细胞TRNA进行全长异质细胞TRNA的测序。与基于NGS的方法(失去RNA修改信息)不同,MLC-Seq保留了RNA序列多样性和修改信息,揭示了新的详细的化学计量tRNA修饰谱及其在使用DealKylating酶ALKB治疗时进行的更改。也可以将其与参考序列结合使用,以提供对总TRNA样品中不同TRNA和修改的定量分析。MLC-Seq可以实现RNA修改的系统,定量和特定于位点的映射,从而揭示了TRNA的真正完整信息内容。■简介
由于存在较长的 poly-A/T 均聚物片段,这会妨碍测序和组装,因此对海鞘 Oikopleura dioica 的线粒体基因组进行测序是一项艰巨的任务。本文,我们报告了通过将 Illumina 和 MinIon Oxford Nanopore Technologies 获得的多个 DNA 和扩增子读数与公共 RNA 序列相结合,对 O. dioica 的大部分线粒体基因组进行测序和注释。我们记录了大量 RNA 编辑,因为线粒体 DNA 中存在的所有均聚物片段都对应于线粒体 RNA 中的 6U 区域。在 13 个典型的蛋白质编码基因中,我们能够检测到 8 个,外加一个未分配的开放阅读框,该阅读框与典型的线粒体蛋白质编码基因缺乏序列相似性。我们发现 nad3 基因已转移到细胞核中并获得了线粒体靶向信号。除了两个非常短的 rRNA 外,我们只能识别出一个 tRNA(tRNA-Met),这表明 tRNA 基因丢失多次,而核基因组中线粒体氨酰-tRNA 合成酶的丢失也支持了这一观点。基于已识别的八个典型蛋白质编码基因,我们重建了最大似然和贝叶斯系统发育树,并推断出该线粒体基因组的极端进化率。然而,附肢动物在被囊动物中的系统发育位置无法准确确定。
对核苷酸三元组到氨基酸的遗传密码的解释是生命的基础。 这种解释是通过细胞TRNA实现的,每个人都通过其互补反密码子(位置34-36)读取三胞胎密码子,同时将充电至其3'端的氨基酸传递。 然后将这种氨基酸掺入核糖体蛋白质合成期间的生长多肽链中。 解释的质量和多功能性不仅可以通过密码子与年代的配对来确保,而且还通过在每个tRNA的位置34和37处的转录后修饰来确保,分别对应于对应于抗构型抗源代码的第一个位置的旋转核苷酸,并相对于抗代支的3''侧。 如何通过匹配的反密码子读取每个密码子,以及需要哪些修改,因此不能单独使用密码子 - 抗议配对来预测。 在这里,我们提供了一个易于访问的修改模式,该模式集成到遗传代码表中。 我们将重点放在革兰氏阴性细菌大肠杆菌作为模型上,这是为数不多的生物之一,其整个tRNA修饰和修饰基因都被鉴定和映射。 这项工作提供了一个重要的参考工具,该工具将促进蛋白质合成研究,这是细胞寿命的核心。对核苷酸三元组到氨基酸的遗传密码的解释是生命的基础。这种解释是通过细胞TRNA实现的,每个人都通过其互补反密码子(位置34-36)读取三胞胎密码子,同时将充电至其3'端的氨基酸传递。然后将这种氨基酸掺入核糖体蛋白质合成期间的生长多肽链中。解释的质量和多功能性不仅可以通过密码子与年代的配对来确保,而且还通过在每个tRNA的位置34和37处的转录后修饰来确保,分别对应于对应于抗构型抗源代码的第一个位置的旋转核苷酸,并相对于抗代支的3''侧。如何通过匹配的反密码子读取每个密码子,以及需要哪些修改,因此不能单独使用密码子 - 抗议配对来预测。在这里,我们提供了一个易于访问的修改模式,该模式集成到遗传代码表中。我们将重点放在革兰氏阴性细菌大肠杆菌作为模型上,这是为数不多的生物之一,其整个tRNA修饰和修饰基因都被鉴定和映射。这项工作提供了一个重要的参考工具,该工具将促进蛋白质合成研究,这是细胞寿命的核心。
转移RNA动力学通过调节密码子特异性信使RNA翻译有助于癌症的发展。特定的氨基酰基-TRNA合成酶可以促进或抑制肿瘤发生。在这里我们表明valine氨基酰基-TRNA合成酶(VARS)是密码子偏置翻译重编程的关键参与者,该重编程是由于对靶向(MAPK)疗法在黑色素瘤中的抗性(MAPK)。患者衍生的MAPK治疗耐药性黑色素瘤中的蛋白质组会重新布线,偏向于valine的使用,并且与valine cognate trnas的上调以及VARS的表达和活性相吻合。引人注目的是,VAR敲低重新敏感了MAPK-耐药的患者衍生的黑色素瘤体外和体内。从机械上讲,VARS调节了富含Valine的转录本的使者RNA翻译,其中羟基酰基-COA脱氢酶mRNA编码用于脂肪酸氧化中的关键酶。耐药性黑色素瘤培养物依赖于脂肪酸氧化和羟基乙酰-COA脱氢酶在MAPK治疗后的生存。一起,我们的数据表明,VAR可能代表了治疗耐药性黑色素瘤的有吸引力的治疗靶点。
使用正交翻译系统(OTSS)是通过在遗传密码中添加非经典氨基酸(NCAA)来产生非天然蛋白质的最有效方法。在寻求扩展底物特异性时,常规方法始于(超 - )稳定酶,能够承受由于必要突变而导致的结构变化。然而,我们在这里从发展以应对不稳定性的酶开始,从而占据根本不同的位置,因此可能对突变表现出更大的弹性。通过工程化甲烷菌Coides Burtonii的精神病(“冷”)OTS,我们开发了常用的中嗜和热嗜热系统的替代方法。即使在非常低的NCAA浓度下,这种OT在体内效率和滥交方面都显示出显着的特性。鉴于适用的寄主生物的广泛范围,我们预计冷酷将极大地促进扩展的遗传密码从学科转变为高价值化学驱动的生物技术。
抑制器转移RNA(SUP-TRNA)因其在治疗由胡说八道突变引起的遗传疾病方面的有希望的治疗特性而受到重新关注。传统上,通过用抑制剂序列代替天然TRNA的反密码子序列创建了SUP-TRNA。但是,由于其复杂的相互作用组,考虑到设计和工程的其他结构和功能性tRNA特征可以产生更有效的SUP-tRNA疗法。超过20年,遗传代码扩展(GCE)的领域创造了大量的知识,资源和工具,以设计SUP-TRNA。在这篇迷你审查中,我们旨在阐明如何采用现有的知识和策略来加速发现医疗治疗方案的有效和特定的SUP-TRNA。我们重点介绍方法和里程碑,并讨论这些方法如何启发tRNA药物的研究和开发。
细菌抗生素持久性是一种现象,即细菌暴露于抗生素后,大多数细菌死亡,而一小部分细菌进入低代谢持久状态并能够存活。一旦去除抗生素,持久性细菌群落可以复苏并继续生长。这种现象与几种不同的分子机制和途径有关。细菌抗生素持久性的一个常见机制可能是蛋白质合成的扰动。为了研究这种机制,我们鉴定了四种不同的 metG 突变体,以确定它们是否能够提高抗生素持久性。两种 metG 突变体编码 MetRS 催化位点附近的变化,另外两种突变体编码反密码子结合域附近的变化。metG 中的突变尤其令人感兴趣,因为 MetRS 负责启动 tRNA Met 和延长 tRNA Met 的氨酰化,这表明这些突变体可能影响翻译起始和/或翻译延长。我们观察到所有 metG 突变体都提高了抗生素持久性水平,而野生型 metG 的转录水平也降低了。虽然 MetRS 变体本身不会对 MetRS 活性产生影响,但它们确实降低了翻译率。我们还观察到 MetRS 变体影响同型半胱氨酸的校对机制,并且这些突变体的生长对同型半胱氨酸高度敏感。结合以前的研究结果,我们的数据表明,细胞 Met-tRNA Met 的减少
图2。tRNA leu库设计和下一代测序选择数据。a)受体茎的序列对齐的WEBLOGO表示来自682个细菌trNA,表明每个位置在每个位置的每个残基相对丰度。编号方案相对于tRNA ecleu(面板b)。b)野生型大肠杆菌tRNA cuA leu的三叶草结构,通过随机使受体词干碱基对随机使图书馆生成方案。基础配对均通过根据框中显示的彩色方案在每个位置引入每个位置的成对替换来维护。随机化被限制以维持保守的序列元素(面板A)。c)在选择之后和之前,使用其在文库中的标准化丰度(以前/以前/丰度)在库中测量了库中每个突变体在库中的富集。进行了选择的两种生物学重复,并彼此绘制了这两种重复物中观察到的每个突变体的富集。d)显示了最高1%(最丰富)序列的共识序列。提供了WT-TRNA ecleu的序列作为参考。e)在存在或不存在1 mM帽的情况下,通过将每个tRNA ecleu突变体的活性与PLRS1和EGFP-39TAG一起转染中,与PLRS1和EGFP-39TAG进行了测试(另请参见图S5)。在无细胞提取物中测量了EGFP-39TAG的表达,
摘要:遗传密码扩展(GCE)可以使非典型氨基酸(NCAA)的位点选择性掺入蛋白质中。GCE已大大提高,可用于在细胞内部创建生物策略手柄,监测和控制蛋白质,研究翻译后修饰和工程新蛋白质功能。自建立我们的实验室以来,我们的研究集中在使用氨基酰基-TRNA合成酶/tRNA(AARS/tRNA)对中GCE在蛋白质和酶工程中的应用。该主题已经进行了广泛的审查,毫无疑问,GCE是工程蛋白质和酶的强大工具。因此,对于这个年轻的教师问题,我们想对我们使用的方法以及我们在实验室中考虑的挑战进行更技术性的了解。自启动实验室以来,我们已经成功地使用了针对各种GCE应用量身定制的十二个新颖的AARS/tRNA对。但是,我们承认该领域即使对于专家也会构成挑战。因此,在此,我们提供了NCAA合并中的方法论,并提供了一些实践评论,并将重点放在挑战,新兴解决方案和令人兴奋的发展上。
(David.bikard@pasteur.fr),B.W。(bwiedenheft@gmail.com)和A.I.(artem.isaev@skoltech.ru)