摘要 - 实施具有新兴记忆(例如电阻随机访问记忆(RRAM))的系统设计的系统是减少人工智能能源消耗的重要铅。为了在此类系统中实现最大的能量效率,应尽可能紧密地集成逻辑和内存。在这项工作中,我们关注三元神经网络的情况,其中突触权重假设三元值。我们提出了一种使用预感的两种晶体管/两抗记忆体系结构,其中可以在单个感觉操作中提取重量值。基于对具有这种感觉放大器的杂交130 nm CMOS/RRAM芯片的实验测量,我们表明该技术在低供应电压下特别适合,并且对于处理,电压和温度变化具有弹性。我们表征了方案中的位错误率。我们基于CIFAR-10图像识别任务的神经网络模拟显示,三元神经网络的使用显着提高了神经网络的性能,而对于二进制二进制,这通常是推理硬件而言是优先的。我们最终证明了神经网络对我们方案中观察到的位误差的类型免疫,因此可以在没有误差校正的情况下使用。
这项研究开发了用于合成一些来自纳米石墨氮化碳(G-C 3 N 4)的新型光催化纳米复合材料,由于甲基蓝色染料作为有机污染物在废水中的有机污染物而导致的甲基蓝色染料降解,氧化物(BI 2 O 3)和纳米氧化烯(NGO)。这些合成的新型三元纳米复合材料,包括BIC 80 /GO,BIC 80 /GO,BIC 80 /GO和BIC 80 /GO,其特征在于FTIR,UV -VIS,XRD,XRD,PL,PL,TGA,TGA,FESEM和ED,用于研究热稳定性,表面形态和纯净的纳米复合物的表面形态和纯度的热稳定性。在这项工作中研究了180分钟的可见光照射下,纳米材料和新型三元纳米复合材料的降解效率(D%)。在pH 12中,在35°C下在35°C下制备三元纳米复合材料BIC 80 /GO(20 mg)的最佳条件。
我们对一个成分蒸发后三元混合物中相分离的蒙特卡洛模拟结果进行定量分析。特别是,我们计算平均域大小,并将其绘制为模拟时间的函数,以计算获得的功率定律的指数。我们对三种不同模型进行了比较和讨论通过两种不同方法获得的结果:二维(2D)二进制模型(ISING模型),2D三元态模型,具有和不蒸发。对于三元态模型,我们还研究了域生长对浓度,温度和初始组成的依赖性。我们为ISING模型重现了预期的1/3指数,而对于不蒸发的三元态模型,对于蒸发的模型,我们获得了指数的较低值。事实证明,在这种类型的系统中可以形成的相位分离模式很复杂。所获得的定量结果为在有机太阳能电池的背景下出现时对形态的尺寸效应的可计算理论估计提供了宝贵的见解。
doi:https://dx.doi.org/10.30919/es1178基于pt@r-go@mwcnts ternary nanocomposites修饰电极Y. Bakytkarim,bakytkarim,1,1,1,#S。tursynbolat,#ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 Z.S. Mukatayeva,1,* ye。Tileuberdi,1 N.A.Shadin,1 ZH.M. Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。 电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。 使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。 由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。 在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。 此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。Shadin,1 ZH.M.Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。
环形翅片是一种特殊的机械传热装置,其径向变化,经常用于应用热工程。在工作装置中添加环形翅片可增加与周围流体接触的表面积。翅片安装的其他潜在领域包括散热器、发电厂热交换器,并且它在可持续能源技术中也发挥着重要作用。本研究的主要目的是引入一种有效的环形翅片能量模型,该模型受热辐射、磁力、导热系数、加热源的影响,并添加了改进的 Tiwari-Das 模型。然后,进行数值处理以获得所需的效率。从结果可以看出,通过加强 α 1 、α 2 和 γ 1 的物理强度以及使用三元纳米流体使其效率更高,翅片效率显著提高。添加加热源 Q 1 使翅片效率更高,辐射数更有利于冷却它。在整个分析过程中观察到三元纳米流体的作用占主导地位,并使用现有数据验证了结果。
摘要:固体聚合物电解质(SPE)将允许在下一代固态锂离子电池(LIBS)中提高安全性和耐用性。在SPE类中,三元复合材料是一种合适的方法,因为它们提供了高室温离子电导率,出色的循环和电化学稳定性。In this work, ternary SPEs based on poly(vinylidene fluoride- co - hexafluoropropylene) (PVDF-HFP) as a polymer host, clinoptilolite (CPT) zeolite, and 1-butyl-3-methylimidazolium thiocyanate ([Bmim][SCN])) ionic liquid (IL) as fillers were produced by在不同温度(室温,80、120和160°C)下溶剂蒸发。溶剂蒸发温度会影响样品的形态,结晶度和机械性能以及离子电导率和锂转移数。分别在室温和160°C下制备的SPE获得了最高离子电导率(1.2×10 - 4 S·CM - 1)和锂转移数(0.66)。电荷 - 放电电池测试显示,在160°C下制备的SPE,分别在C/10和C/2速率下分别在C/10和C/2速率下的排放能力值最高值。我们得出结论,在SPE制备过程中,对溶剂蒸发温度的良好控制使我们能够优化固态电池性能。关键字:三元复合材料,PVDF-HFP,蒸发温度,固体聚合物电解质,锂离子电池
最近的高通量计算搜索预测了许多新型的三元氮化物化合物为在未倍增的相位空间中提供了新的材料发现机会。然而,几乎没有任何预测和/或合成仅将过渡金属纳入新的三元氮化物中。在这里,我们报告了MNCON 2的合成,结构和性能,MNCON 2是一种仅包含过渡金属和N的新三元氮化物材料。我们发现,Crystalline MNCON 2可以在其竞争性的二进制物中稳定,并且在该系统的趋势中可以通过在狭窄的范围内控制该系统的趋势,以使其成为不型生长的趋势。我们发现,单相MNCON 2在阳离子隔离的岩石晶体结构中形成。X射线光电子光谱分析表明,MNCON 2通过各种氧化物和氢氧化物与表面上钴结合的氧气敏感。X射线吸收光谱用于验证Mn 3 +和Co 3 +阳离子是否存在于八面体的协调环境中,这与CON和MNN二元组的组合不同,并且与基于岩石基的晶体结构预测一致。磁性测量表明,MNCON 2在10 K以下具有倾斜的抗磁磁基态。我们提取θ= -49的Weiss温度。7 K,突出显示了MNCON 2中的抗磁相关性。
摘要。这项创新研究研究了微通道中含有旋转的微生物的三元杂化纳米流体的流动。分析了磁场,嗜热和布朗运动效应。使用组转换方法将PDES系统转换为ODE。创新的发现检查了牛顿和非牛顿模型,这些模型来自ODES系统。几个图说明了不同参数如何影响速度谱,温度,浓度和微生物。幂律指数值在n = 3时将流体流速度提高约9%,相对于边界层中心的n = 2.5的情况,n = 4时的36%。此外,与纳米流体相比,三元杂化纳米流体的温度更高。当前的结果与研究人员的发现进行了比较,以确认所获得的结果的有效性。当prandtl编号在6到10之间时,Nusselt号码达到45.49%。
6 s cm -1在准备好的聚合物薄膜中。获得的表征结果与PPY/DBSA/BN复合材料进行的NH 3 3气体传感器测量非常吻合。发现两者之间的线性相关系数为r 2 = 0.9916,表明关系很强。此外,PPY/DBSA/BN薄膜显示出5.8 ppm的检测低限(LOD),超过了NH 3气体的OSHA阈值。这表明传感器对痕量的NH 3气体高度敏感。此外,PPY/DBSA/BN薄膜表现出非凡的可重复性性,最多可用于10个循环,而无需显着降低性能。在存在常见干扰物种的情况下,传感器还表现出对NH 3气体的选择性。此外,它表现出长期稳定性,并在7天内保持其性能。提议的自组装气体传感器在室温下检测NH 3气体时表现出了显着的性能,使其成为工业应用的有前途的候选人。
作者的完整列表:Zhu,Weigang;天津大学化学系李,盖珀;西北大学,化学; Mukherjee,Subhrangsu;纳塔利亚国家标准和技术材料测量实验室大战; Slac,Pulse Institute; Slac Jones,Leighton;西北大学,艾略特化学甘恩;国家标准与技术研究所,物质测量实验室Kline,R。Joseph;国家标准与技术研究所,物质测量实验室Herzing,Andrew;詹娜(Jenna)SMSD Logsdon国家标准与技术研究院;西北大学,化学系弗拉格,卢卡斯;夏洛特国家标准和技术材料科学与工程实验室船尾;西北大学,瑞安(Ryan)的化学Young;西北大学,凯文化学系Kohlstedt;西北大学,乔治的化学Schatz;西北大学,院长化学DeLongchamp;国家标准技术研究所,聚合物Wasielewski,迈克尔;西北大学,费迪南德的化学系;西北大学,安东尼奥的化学Facchetti;西北大学,化学系和材料研究中心标记,托宾;西北大学,化学