三元子系统 热力学评估来源 Cr-Fe-Ni [40] Cr-Fe-Ti [37] Cr-Fe-V [41] Cr-Ni-Ti [42] Cr-Ni-V [41] Cr-Ti-V [43] Fe-Ni-Ti
对于计量机构使用的每种热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
对于计量机构使用的每个热量计,都开发了自己的校准策略。虽然 LNE 的参考热量计可以通过电能进行校准,但商用热量计使用由甲烷、二氧化碳和硫化氢组成的二元和三元校准气体混合物。INM-BRML 的热量计根据 DIN 51899 进行校准,使用一种校准气体和一种质量控制气体。PTB 的热量计根据 ISO 6143 进行校准,使用四种校准气体。为了进行验证,使用了六种二元或三元类似沼气的混合物以及一种类似于煤层气的 10 组分气体。图 2 显示了测量的热值与根据 DIN EN ISO 6976 计算的热值的相对偏差及其不确定性。
摘要 — 本文提出了一种新的图像传感器架构,用于快速准确地对自然图像进行压缩感知 (CS)。CS CMOS 图像传感器中通常采用的测量矩阵是递归伪随机二进制矩阵。我们已经证明,这些矩阵的限制等距性质受到低稀疏常数的限制。这些矩阵的质量还受到伪随机数生成器 (PRNG) 的非理想性的影响。为了克服这些限制,我们提出了一种硬件友好的伪随机三元测量矩阵,该矩阵通过 III 类基本细胞自动机 (ECA) 在芯片上生成。这些 ECA 表现出一种混沌行为,比其他 PRNG 更好地模拟了随机 CS 测量矩阵。我们将这种新架构与基于块的 CS 平滑投影 Landweber 重建算法相结合。通过单值分解,我们调整了该算法,使其在操作二进制和三元矩阵时执行快速而精确的重建。提供了模拟来验证该方法。
66 888 Proloy Chandra Pal 达卡大学 应用数学 分隔腔中三元混合纳米流体的自然对流。 54,000/- 67 1077 Sultana Rajia 拉贾沙希大学 化学系 治疗 COVID-19 的潜在药物:合成与应用 54,000/-
混合纳米流体 (HNF) 和三重混合纳米流体 (THNF) 具有广泛的工业、工程和医学应用,因为它们可以提高传热速率。由于 THNF 的这些应用,在本问题中,分析了磁流体动力学 (MHD) 场中水基流体和铜、氧化铝和氧化钛纳米颗粒在指数拉伸表面上的 3D 流体动力学流动。在本研究中,提出了一种根据 THNF 的激发潜能使用 THNF 增强传热的新数学模型。该比较模型适用于在磁场存在下新模型的指数流。使用连续性、动量和能量方程推导出偏微分方程 (PDE)。使用 MATLAB 软件中的 𝑏𝑣𝑝−4𝑐 算法获得数值结果。主要结果表明,与混合材料相比,三元混合纳米材料的努塞尔特数(衡量热量传递速率的数值)更高。三元混合纳米流体的努塞尔特数值比混合纳米流体高 38.4%。三元混合纳米流体的努塞尔特数最高值为 1.5090,出现在帕朗特尔数 8.2 处。三元混合纳米流体的传热速率也优于混合纳米流体和传统纳米流体。A 和 β 的增加也会导致温度下降。此外,提高 Ha 和 β 的值会导致表面摩擦系数增加。此外,由于 𝛽、A、Pr 和 Bi 的增加,努塞尔特数 (Nu) 也会增加。比较图表可知,THNF(𝐶𝑢−𝐴𝑙 2 𝑂 3 −𝑇𝑖𝑂 2 /𝐻 2 𝑂)中的温度和 Nu 的增长率高于 NHF(𝐶𝑢−𝐴𝑙 2 𝑂 3 /𝐻 2 𝑂)中的温度和 Nu 的增长率。
成立于2002年,该公司于2015年上市上市。利用新的能源以及绿色和低碳经济的快速增长,并利用由良好的垂直整合平台所带来的竞争优势,该公司已成为新的能源锂离子电池材料业务的行业领导者。在2022年,该公司(i)在三元阴极材料的运输方面排名世界第二,达到80.3亿吨; (ii)在三元前体的运输方面排名世界第四,达到98.9万吨;据Frost&Sullivan称,(iii)在精制钴产品的运输方面排名第一,该产品达到了369亿吨。与此同时,该公司正在积极探索印度尼西亚的后镍资源的开发,该公司为该公司成为新能源锂离子电池材料行业的全球领导者奠定了坚实的基础。
摘要 先前的工作提供了将酉矩阵分解为一系列量子多路复用器的方法,但以这种方式创建的多路复用器电路可能高度非最小。本文提出了一种优化具有任意单量子比特量子目标函数和三元控制的量子多路复用器的新方法。对于多值量子多路复用器,我们定义了标准形式和两种新形式:固定极性量子形式(FPQF)和克罗内克量子形式(KQF)。从蝴蝶图的使用中获得灵感,我们设计了一种详尽构建新形式的方法。与以前使用经典布尔函数的基于蝴蝶的方法相比,这些新形式用于优化具有任意目标酉矩阵的量子电路。将新形式应用于各种目标门(如NOT、V、V +、Hadamard和Pauli旋转)的实验结果表明,这些新形式大大降低了三元量子多路复用器的门成本。