* 通讯作者:mlong@uchicago.edu (ML);jbergelson@uchicago.edu (JB);huangyuan@mail.kib.ac.cn (YH)。† 资深作者 ‡ 这些作者贡献相同 (YH、JC)。ML、JB 和 YH 设计了这项研究。YH 撰写了论文初稿。YH 和 JC 进行了所有实验,包括表型观察和分析、突变体生成、鉴定、表达、转录组和基因组测序以及进化分析。CD 和 SD 参与了群体遗传分析。CF 提供了植物材料。CF、YO、DL、SX 和 EM 修改了稿件。ML 和 JB 指导了这项研究,构思并监督了写作。根据作者须知 (https://academic.oup.com/plcell) 中所述的政策,负责分发与本文所述研究结果相关的材料的作者是:Manyuan Long (mlong@uchicago.edu)。
几十年来,农杆菌介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的 T-DNA 从细菌转移到植物细胞中,在那里它通过聚合酶θ (Pol h ) 介导的末端连接 (TMEJ) 随机整合到基因组中。通过同源重组 (HR) 将 T-DNA 靶向到特定基因组位点也是可能的,但此类基因靶向 (GT) 事件发生的频率很低,并且几乎总是伴随着随机整合事件。另一个复杂因素是,T-DNA 和目标位点重组的产物可能不仅映射到目标位点 (真正的 GT),还可能映射到基因组中的随机位置 (异位 GT)。在本研究中,我们通过使用突变了 TEBICHI 基因(该基因编码 Pol h )的拟南芥,研究了 TMEJ 功能如何影响植物中 GT 的生物学。在 TMEJ 功能强大的植物中,我们主要发现 GT 事件伴随着随机的 T-DNA 整合,而在 teb 突变体背景下获得的 GT 事件缺乏额外的 T-DNA 拷贝,证实了 Pol h 在 T-DNA 整合中的重要作用。Pol h 缺乏也会阻止异位 GT 事件,这表明导致此结果的事件序列需要 TMEJ。我们的研究结果提供了可用于制定在农作物中获得高质量 GT 事件的策略的见解。
tumefaciens介导的转化一直是生成转基因植物的首选工具。在此过程中,携带转基因的T-DNA从细菌转移到植物细胞,在该细菌中,它通过聚合酶theta(Pol H)介导的末端连接(TMEJ)随机地整合到基因组中。通过同源重组(HR)将T-DNA靶向特定的基因组基因座(HR),但这种基因靶向(GT)事件以低频发生,几乎总是伴随着随机整合事件。另一个复杂性是,T-DNA和目标基因座之间的重组的乘积不仅可以映射到目标基因座(TRUE GT),还可以映射到基因组中的随机位置(异位GT)。在这项研究中,我们通过使用用于Tebichi基因的Tebichi Gene突变的拟南芥,研究了TMEJ功能如何影响植物中GT的生物学,该基因编码为polH。虽然在TMEJ-Profientient植物中,我们主要发现GT事件伴随着随机T-DNA整合,而在TEB突变体背景中获得的GT事件缺乏其他T-DNA拷贝,从而证实了POL H在T-DNA整合中的基本作用。pol H的表现也阻止了异位GT事件,这表明导致此结果的事件顺序需要TMEJ。我们的发现提供了见解,可用于制定策略以获得农作物中的高质量GT事件。
摘要 — 研究了 T-DNA 插入拟南芥 At3g58450 基因(该基因编码与发芽相关的通用应激蛋白 (GRUSP))的 3'-UTR 区域的影响。研究发现,在长日照条件下,该突变会延迟 grusp-115 转基因株系的开花转变,这是因为与野生型植物 (Col-0) 相比,内源生物活性赤霉素 GA1 和 GA3 的含量降低。外源 GA 加速了这两个株系的开花,但没有改变 Col-0 和 grusp-115 之间开花开始时间的差异。除了 GA 代谢的变化之外,grusp-115 显然在诱导开花信号的实现方面存在干扰。开花整合因子 FLOWERING LOCUS T ( FT ) 和开花抑制因子 FLOWERING LOCUS C ( FLC ) 的基因表达结果证实了这一点,它们是关键的开花调节因子,作用相反。我们假设,由于 FLC 表达上调,FT 表达水平较低也会影响 grusp-115 表型的形成。
摘要:在拟南芥中,含环的E3泛素连接酶高表达的高响应基因1(HOS1)是冷信号传导的主要调节剂。在这项研究中,进行了第一个外显子中HOS1基因的CRISPR/CAS9介导的靶向诱变。DNA测序表明,由HOS1的基因组编辑引入的固定插入导致出现过早的停止密码子,从而破坏了开放的阅读框架。将获得的HOS1 CAS9突变植物与SALK T-DNA插入突变体(HOS1-3线)进行了比较,就其对非生物胁迫的耐受性,二级代谢产物的积累和参与这些过程的基因表达水平的积累而言。在暴露于冷应激后,在HOS1-3和HOS1 Cas9植物中都观察到了冷响应基因的耐受性和表达。HOS1突变会导致转化细胞中植物甲状腺素合成的变化。葡萄糖醇(GSL)的含量被1.5次下调,而转基因植物中氟乙醇糖苷的上调为1.2至4.2倍。还改变了拟南芥中次级代谢的相应MYB和BHLH转录因子的转录物丰度。我们的数据表明,HOS1调节的下游信号传导与植物甲壳虫生物合成之间存在关系。
CRISPR/CAS9系统已成为一种强大的基因组工程工具,用于研究基因功能并改善植物特征。基因组编辑是通过Cas9核酸内切酶在特定的基因组序列上实现的,以产生由短导RNA(SGRNA)指导的双标准断裂(DSB)。DSB通过容易出错的非同源末端连接(NHEJ)或无错误的同源指导修复(HDR)路径来修复,分别导致基因突变或序列替换。这些细胞DSB修复途径可以被利用以敲除或替换基因。另外,胞质或腺嘌呤碱基编辑器(CBES或ABE)融合到催化死亡的Cas9(DCAS9)或Nickase Cas9(NCAS9)(NCAS9)时,也用于执行精确的基础编辑而无需生成DSB。在本章中,我们描述了通过使用基于CRISPR/CAS9的系统在拟南芥基因组中执行单个/多基因突变和精确基础编辑的详细程序。特别是,描述了转基因线的目标基因选择,SGRNA设计,矢量结构,转化和分析的步骤。该方案有可能适应在其他植物物种(例如水稻)中进行基因组编辑。
CRISPR/CAS系统通过诱导特定位点DNA双链断裂(DSB)启用基因编辑。但是,诱导的修饰的性质高度取决于用于DNA DSB修复的机制。非同源末端连接(NHEJ)介导的靶向诱变是由CRISPR/CAS诱导的一种已经标准应用的工具,可以在特定的基因组位点导致各种不同种类的突变。尽管如此,使用同源供体序列的精确基因组修饰仍然具有挑战性。的应用取决于较不频繁的同源重组(HR)需要进一步改进,以创建一种有吸引力的植物应用工具。着眼于这个问题,我们开发了植物基因靶向(IPGT)系统,该系统基于同时切除稳定集成的同源供体序列和目标位点中DSB的诱导。近年来,增强了基因靶向(GT)频率的几种改进。在为IPGT链球菌CAS9(SP Cas9)和金黄色葡萄球菌Cas9(SA Cas9)成功地促进了,我们能够使用lachnospileceae cas12a(lb cas12a)进一步改善该系统,这也可以在T-rich区域进行切割。 最近,我们测试了IPGT的LB CAS12A(TT LB CAS12A)的改进,耐温度的版本,并能够进一步提高GT效率。 在这里,我们详细介绍了使用TT LB Cas12a详细介绍最近发布的IPGT系统的实验程序。 ©2020作者。,我们能够使用lachnospileceae cas12a(lb cas12a)进一步改善该系统,这也可以在T-rich区域进行切割。最近,我们测试了IPGT的LB CAS12A(TT LB CAS12A)的改进,耐温度的版本,并能够进一步提高GT效率。在这里,我们详细介绍了使用TT LB Cas12a详细介绍最近发布的IPGT系统的实验程序。©2020作者。