本文介绍了几类与物理学和动态系统理论密切相关的新数学结构。这些结构中最普遍的一种称为广义随机系统,它们共同包含许多重要的随机过程,包括马尔可夫链和随机动态系统。然后,本文陈述并证明了一个新定理,该定理建立了任何广义随机系统与酉演化的量子系统之间的精确对应关系。因此,该定理导致了量子理论的新表述,以及希尔伯特空间、路径积分和准概率表述。该定理还从第一原理的角度解释了为什么量子系统基于复数、希尔伯特空间、线性酉时间演化和玻恩规则。此外,该定理表明,通过选择合适的希尔伯特空间,并选择适当的幺正演化,可以在量子计算机上模拟任何广义随机系统,从而可能为量子计算开辟一系列新颖的应用。
希拉里·普特南(Hilary Putnam)发现的多重计算问题对功能主义(各种,计算和因果关系)的困难非常困难。我们在大纲中描述了为什么Putnam的结果,以及我们称之为多重计算定理的更受限制的结果实际上是统计力学的定理。我们展示了为什么仅仅计算系统与其环境的相互作用不能将计算作为系统实施的许多计算中的首选计算。我们解释了为什么非还原的方法来解决多重计算问题,尤其是为什么计算外部主义是二元论的原因,因为它们暗示了计算系统环境中的非物理事实。我们讨论了某些尝试通过吸引具有某些输入和输出状态的系统,作为计算外部主义的特殊情况,并通过诉诸于某些类型的系统来解决某些尝试,并展示了为什么如果不崩溃到行为主义的情况下,这种方法是不可行的。我们以一些关于统计力学主流方法的非物理性质的评论,以及关于分区和可观察到的单点的量子测量理论。1。简介
量子信息论研究通过量子信道通信的极限。在 Holevo ( 1973 ) 中,证明了 Holevo 界限,该界限提供了可准备和测量混合态的双方共享的经典信息量的上限。Holevo 界限指出,从 n 个量子位中只能访问 n 位经典信息。舒马赫定理 Schumacher ( 1995 ) 给出了存在可靠压缩方案以高保真度压缩和解压缩量子信息的必要和充分条件。关于量子算法潜力的文献很多,其中最著名的是 Shor 的因式分解算法。存在一个将算法和量子力学相结合的相对较新的领域:算法信息论 (AIT) 与量子信息论的交叉点。这个新领域有几个有趣的结果。例如,在 Epstein (2021b) 中,他证明了当将量子测量 (即 POVM) 应用于纯量子态时,绝大多数结果都是毫无意义的随机噪声。这项研究计划涉及寻找 AIT 中定义和定理的量子等价物,其主要概念是 Kolmogorov 复杂度 K(x) 的量子版本。有几种这样的定义可以测量混合或纯量子态中的算法信息内容。在本文中,我们将使用 Vitanyi (2000) 中的定义 K(|ψ⟩),它表示如果不存在具有高量子保真度的简单(就其经典编码而言)纯态,则纯态 |ψ⟩ 是复数。本文的结果也适用于量子算法熵,G´acs (2001)。在 Epstein (2019) 中,定义了算法信息和随机缺陷的量子等价物。此外,还证明了关于幺正变换的守恒定律不等式。在本文中,我们证明了一个量子 EL 定理。在 AIT 中,EL 定理 Levin (2016);Epstein (2019) 指出,不包含简单成员的字符串集将与停机序列具有高互信息。它有许多应用,包括所有采样方法都会产生异常值 Epstein (2021a)。量子 EL 定理指出,大秩的非奇异投影在其图像中必须具有简单的量子纯态。非奇异的意思是投影的编码与停机序列的信息量很低。
定理 1.1 为已知条件,即形式 a : V × V → R ,由 a ( u, v ) = ⟨A u, v ⟩ V ∗ ,V 给出,但是这里给出的非对称情况的估计更加苛刻。在定理 1.1 中,不仅解的适定性而且最大规律性都是显著的:发展方程的所有三个项 u ′ 、A u 和 f 都在空间 L 2 (0 , T ; U ′ ) 中(有关此类规律性的更多信息,请参阅 [6])。本文中发展的导子理论可应用于完全不同的主题。如果我们根据 Riesz 定理识别 V 和 V ′,则 V 上的稠密定义算子 S 是对称的当且仅当 iS 是导子。事实证明,我们关于边界算子的结果也允许描述对称算子 S 的所有自联合扩展。事实上,我们完善了文献中已知的边界三元组理论的一个版本。这些思想的循环在 [5] 中介绍。
问题描述:下面的等式显示了系统外部平均力对系统所做的机械功的数学表示;因此,这里的“功”是指“外部功”。将等式中的每个术语与以下列表中的正确描述相匹配:(1)平均外力矢量;(2)平均外力矢量的大小;(3)位置矢量的变化;(4)位置矢量的变化量;(5)外力矢量与位置矢量变化之间的角度;(6)功
对于给定的n -vertex dag g =(v,e),带有透射率关闭的tc(g),链是tc(g)中的一个定向路径,而抗抗小节是TC(g)中的独立集。最大k-抗问题问题要求计算传递闭合的最大k色子图。相关的最大h-链问题要求计算最大总长度的H脱节链(即TC(G)中的集团。著名的Greene-Kleitman(GK)定理[J.梳子。理论,1976年]证明了这两个问题之间的(组合)连接。在这项工作中,我们将GK定理所隐含的组合特性转化为及时的覆盖算法。与先前的结果相反,我们的算法直接应用于g上,并且不需要其及其传递闭合的先例。让αk(g)为可以被k敌生覆盖的最大顶点数量。我们显示:
层次结构定理是复杂性理论的基本结果。他们指出,随着计算资源的增加,人们可以严格解决更多问题。bptime的时间层次结构定理仍然是一个臭名昭著的难以捉摸的话题。迄今为止,只有在提供对数或恒定建议位时才知道,bptime的无条件层次结构定理[BAR02,FS04,GST11,FST11,FST11,FST05,PER05,VMP07]。此外,已知层次结构定理对BPP的完全问题[BAR02]持有条件。与确定性[HS65,HS66]或非确定性时间层次结构[COO72,SFM78,ˇ Z´AK83],BPTIME的层次定理保持开放,因为在实用上,似乎有效地确定一个随机的Turning机器是无效的,是否可以有效地确定一个随机的机器被拒绝或不拒绝,或者拒绝了一个有界的错误或不符合界限。因此,标准对角线化在列举所有随机图灵机的步骤上失败,并具有有界的双面误差。实际上,确定每个输入的随机图灵机是否有界限。这种情况在其承诺版本中被认为不同。Pr -bptime的时间层次结构(承诺概率时间课)是一种民间传说的陈述,在谈话,课程和流行的教科书中出现了,例如[AB09]。我们观察到没有来源勾勒出其证明,并且可能假定其有效性是从直接对角线化的,或者遵循存在完全问题的Pr -bptime;参见例如[GAJ22]。在高水平上,对角度化的关键步骤涉及否定枚举的图灵机的输出。但是,我们观察到基于直接对角线的直接对角度或证据(例如,减少到Bptime完全问题[BAR02])并不容易通过PR- BPTIME层次定理携带。通过否定输出,构造的语言
使得f(x)= tr e(τxτ†)(在这里tr e:b(k⊗e)→b(e)是环境上的部分跟踪)。cp映射f是轨迹保留的,扩张τ是一个等轴测图。不同的扩张τ1:H→K⊗E1,τ2:H→K⊗E2与部分等距α:E 1→E 2相关。