𝑓𝑓!𝑥,,…,𝑥!≔∏ -𝑓𝑥-是𝜀!- 预测𝐷𝐷![levin'87]等效于平行重复,直至一定损失:•XOR引理⇒平行重复 - 直觉上容易[Viola,widgerson'08]•XOR引理⇐平行重复 - Goldreich -Levin
事件的因果顺序不必固定:在某个站点,一辆公交车是先于另一辆公交车到达还是晚于另一辆公交车到达可能取决于其他变量,比如交通状况。因果顺序的相干量子控制也是可能的,而且是多种任务的有用资源。然而,量子控制意味着控制系统携带着哪种顺序的信息——如果控制被追踪,事件的顺序将保持概率混合。两个事件的顺序可以是纯叠加,与任何其他系统不相关吗?这里我们表明,对于一类广泛的过程来说,这是不可能的:任何一对具有相同局部维度和不同因果顺序的马尔可夫幺正过程的纯叠加都不是有效过程,即当用某些操作探测时,它会导致非正则化概率。这一结果对量子信息处理的新资源和量子引力理论中的可能过程施加了限制。
窃听是不可克隆定理的结果,假设发送的四个状态 | ↑ + z ⟩ , | ↓ − z ⟩ , | ↑ + x ⟩ , | ↓ − x ⟩ 并不都是相互正交的,并且它们的生成是随机的,因此不存在
两个图G和H是图形F家族的同态性,如果对于所有图F∈F,则从F到G的同态数量等于从F到H的同构数量。比较图形,例如(量子)同构,合适和逻辑等价的许多自然对等关系可以被视为各种图类别的同态性关系。对于固定的图类F,决策问题(F)要求确定两个输入图G和H是否在F上无法区分。众所周知,该问题仅在少数图类别f中可以决定。我们表明,Hom I nd(f)允许每个有界树宽的图类F类随机多项式算法,这在计数Monadic二阶逻辑CMSO 2中是可以定义的。因此,我们给出了第一个一般算法,以确定同态性不可分性。此结果延伸到h om i nd的一个版本,其中图形F类由CMSO 2句子指定,而在树顶上绑定了一个绑定的k,将其作为输入给出。对于固定k,此问题是可随机固定参数的。如果k是输入的一部分,则它是conp-和cow [1] -hard。解决Berkholz(2012)提出的问题时,我们通过确定在k维weisfeiler-Leman算法下确定在k是输入的一部分时确定不可区分性的情况。
Nielsen-Ninomiya 定理是高能和凝聚态物理中关于手性费米子在静态晶格系统中实现的基本定理。本文我们扩展了动态系统中的定理,其中包括静态极限中的原始 Nielsen-Ninomiya 定理。原始定理对于块体手性费米子来说是行不通的,而新定理由于动态系统固有的块拓扑而允许它们实现。该定理基于对偶性,可以统一处理周期性驱动系统和非厄米系统。我们还给出了受对称性保护的非手性无间隙费米子的扩展定理。最后,作为我们的定理和对偶性的应用,我们预测了一种新型的手性磁效应——非厄米手性磁肤效应。
电子邮件:a.mohammadi@ipm.ir†瑞士EthZéurich组合算法理论。电子邮件:phamanhthang.vnu@gmail.com•瑞士EthZéurich计算机科学系。电子邮件:yitwang@student.ethz.ch
由于正则角动量守恒,在螺线管场内产生的带电粒子束在螺线管场外获得动能角动量。动能轨道角动量与阴极上的场强度和光束大小的关系称为 Busch 定理。我们以量子力学形式表述了 Busch 定理,并讨论了量化涡旋光束(即携带量化轨道角动量的光束)的产生。将阴极浸入螺线管场是一种产生电子涡旋光束的有效而灵活的方法,而例如,可以通过将电荷剥离箔浸入螺线管场来产生涡旋离子。这两种技术都用于加速器以产生非量化涡旋光束。作为高度相关的用例,我们详细讨论了在电子显微镜中从浸入式阴极产生量化涡旋光束的条件。指出了该技术用于产生其他带电粒子涡旋束的普遍可能性。
在本次演讲中,我将解释流形 M 的德拉姆上同调与同一空间上的紧支撑上同调之间的对偶性。这种现象被称为“庞加莱对偶”,它描述了微分拓扑中的一种普遍现象,即流形上封闭的、精确可微形式空间与其紧支撑对应物之间的对偶性。为了定义和证明这种对偶性,我将从向量空间对偶空间的简单定义开始,再到向量空间上正定内积的定义,然后定义流形的概念。我将继续定义可微流形上的微分形式及其相应的空间,这些对于此分析是必要的。然后,我将介绍流形的良好覆盖、有限型流形和方向的概念,这些都是定义和证明庞加莱对偶所必需的概念。我将以 M 可定向且承认有限好覆盖的情况下的庞加莱对偶的证明作为结束,并举例说明。
1。V. H. Almendra-Hernández,G。Ambrus和M. Kendall,通过稀疏近似,离散计算的定量Helly-type定理。GEOM。70(2022),1707。https://doi.org/10.1007/S00454-022–00441–5 2。I.Bárány和A. Heppes,在平面定量定理的确切常数上,离散计算。GEOM。12(1994),否。4,387–398。3。I.Bárány,M。Katchalski和J. Pach,定量的Helly-type定理,Proc。Amer。 数学。 Soc。 86(1982),否。 1,109–114。 4。 K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。Amer。数学。Soc。86(1982),否。1,109–114。4。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。 154,剑桥大学出版社,剑桥,2004年。 5。 K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。 伦敦数学。 Soc。 41(2009),否。 5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。K.Böröczky,Jr,有限的包装和覆盖,《数学中的剑桥大学》,第1卷。154,剑桥大学出版社,剑桥,2004年。5。K. M. Ball和M. Prodromou,是Vaaler定理的敏锐组合版本。伦敦数学。Soc。41(2009),否。5,853–858。 6。 P。黄铜,在平面中的定量Steinitz定理上,离散计算。 GEOM。 17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。5,853–858。6。P。黄铜,在平面中的定量Steinitz定理上,离散计算。GEOM。17(1997),否。 1,111–117。 7。 C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。 1,193–217。 https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。17(1997),否。1,111–117。7。C.Carathéodory,überdenvariabilitätsbereichfourier'schen konstanten von potitiven potitiven harmonischen funktionen,Rendiconti del Circolo Matematico di Palermo(1884-1940)32(1911),否。1,193–217。https://doi.org/10。 1007/bf03014795 8。 J. A. de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。 GEOM。 57(2017),第1期。 2,318–334。https://doi.org/10。1007/bf03014795 8。J.A.de Loera,R。N. La Haye,D。Rolnick和P.Soberón,用于连续参数的定量组合几何,离散计算。GEOM。57(2017),第1期。2,318–334。9。G. Ivanov和M.Naszódi,一种定量的Helly-type定理:Hyothet中的遏制,Siam J.离散数学。36(2022),否。2,951–957。10。D. Kirkpatrick,B。Mishra和C.-K。 YAP,定量Steinitz的定理,并应用了多方面抓握,离散计算的应用。GEOM。7(1992),否。3,295–318。11。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。 数学。 143(1913),128-176。E. Steinitz,Bedingt Konvergente Reihen und Konvexe Systeme,J。ReineAngew。数学。143(1913),128-176。143(1913),128-176。
我们介绍了一个定理,该定理限制在球形表面上的kirigami tessellations时,带有图案性缝隙形成了自由形式的四边形网格。我们表明,球形kirigami镶嵌具有一个或两个兼容状态,即,最多有两个沿部署路径的隔离菌株配置。该定理进一步揭示了从球形到平面kirigami tessellations的刚性到扁平的过渡,并且仅当狭缝形成平行四边形空隙以及消失的高斯曲率时,这也通过能量分析和模拟来证实。在应用方面,我们显示了基于定理的Bistable球形圆顶结构的设计。我们的研究为基于欧几里得和非欧几里得几何形状的可变形结构的合理设计提供了新的见解。