单元I:矩阵矩阵的矩阵等级,由echelon形式,正常形式。cauchy – binet公式(无证明)。通过高斯 - 约旦方法的非奇异矩阵倒数,线性方程式系统,方程式的线性系统的一致性求解了均匀和非均匀方程的系统,高斯消除方法,雅各比和高斯·塞德尔迭代方法。ii二:特征值,特征向量和正交转换特征值,特征向量及其特性,对角度的对角线化,基质,Cayley-Hamilton定理(没有证明),Cayley-Hamilton Theorem,Quad theorem,Quad to y defuctation to y defuctation to y duiguctation y duiguctation y duiguctation y y y y y y dy fi y y y y y y y y y y y y y y y y y y y y y dy fiqur通过相似性转换,拉格朗日的减少和正交转换,复杂矩阵的类型(Hermition偏向Hermition&Unity)
单位 - I:通过梯形形式和正常形式的矩阵矩阵等级,高斯 - 约旦方法的非单个矩阵倒数,线性方程系统:求解高斯消除方法的均匀和非均匀方程的系统,高斯·塞德尔迭代方法。UNIT - II: Eigen values and Eigen vectors Linear Transformation and Orthogonal Transformation: Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley -Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form通过正交转换为规范形式。单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的系列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单位-IV:多变量计算(部分分化和应用)的定义极限和连续性。部分区分:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:
单元1:工程数学线性代数:矩阵代数,线性方程系统,特征值,特征向量。Calculus: Mean value theorems, Theorems of integral calculus, Evaluation of definite and improper integrals, Partial Derivatives, Maxima and minima, Multiple integrals, Fourier series, Vector identities, Directional derivatives, Line integral, Surface integral, Volume integral, Stokes's theorem, Gauss's theorem, Divergence theorem, Green's theorem.微分方程:一阶方程(线性和非线性),具有恒定系数的高阶线性微分方程,参数变化的方法,Cauchy方程,Euler方程,初始值和边界值问题,部分微分方程,部分微分方程,变量分离方法。复杂变量:分析函数,Cauchy的积分定理,Cauchy的积分公式,Taylor系列,Laurent系列,残基定理,解决方案积分。概率和统计:对定理,有条件的概率,平均值,中位数,模式,标准偏差,随机变量,离散和连续分布,Poisson分布,正态分布,二项式分布,相关分析,回归分析分析,回归分析分析:矩阵逆上的矩阵倒立,求解非元素平等的方法,差异和差异化方法,差异和差异化方法,差异和差异性方法差异化方法,差异差异和差异化方法差异化方法和差异方法。相关分析。单元2:应用力学和设计工程机制:自由图和平衡;摩擦及其应用,包括滚动摩擦,Belt-Pulley,刹车,离合器,螺丝千斤顶,楔子,车辆等。;桁架和框架;虚拟工作;平面运动中刚体的运动学和动力学;冲动和动量(线性和角度)以及能量配方;拉格朗日方程。材料力学:应力和应变,弹性常数,泊松比; Mohr的圆圈,用于平面应力和平面应变;薄缸; shear force and bending moment diagrams;弯曲和剪切应力;剪切中心的概念;梁的挠度;圆形轴的扭转;欧拉的
组:群体,正常亚组,商组,同构定理,Cayley定理的同态。广义的Cayley定理,Cauchy的定理,小组动作,Sylow定理及其应用。正常和亚正常序列,组成序列,可解决的组和尼尔植物组,Jordan-Holder定理及其应用。戒指:理想和同构,素数和最大理想,商领域和整体域,多项式和功率系列环。划分理论:欧几里得领域,主要理想领域,独特的分解域,高斯定理。Noetherian和Artinian戒指,希尔伯特基础定理,Chhen的定理。模块:具有身份,循环模块,自由模块,基本结构定理的左右模块,用于有限生成的模块,并应用于有限生成的阿贝尔组。参考:
▪ I.2.0 General ▪ I.2.1 Applications and Expert Systems ▪ I.2.2 Automatic Programming ▪ I.2.3 Deduction and Theorem Proving ▪ I.2.4 Knowledge Representation Formalisms and Methods ▪ I.2.5 Programming Languages and Software ▪ I.2.6 Learning ▪ I.2.7 Natural Language Processing ▪ I.2.8 Problem Solving, Control Methods, and Search ▪ I.2.9 Robotics ▪ I.2.10 Vision and Scene Understanding ▪ I.2.11分布式人工智能▪I.2.m其他O I.3计算机图形
课程成果: 1)分析序列或级数的性质(收敛或发散)。 2)应用中值定理研究物体的运动。 3)用积分计算面积、体积、质量和重心。 4)应用多元微积分研究多元函数的性质。 5)理解微分方程的概念及其应用 课程内容: 模块一:序列和级数:实数序列、级数、比率和根测试。 模块二:单变量函数微积分:极限、连续性和可微性的回顾。 中值定理:罗尔定理、拉格朗日定理、柯西定理、带余数的泰勒定理、不定式、曲率、曲线追踪。积分学基本定理、积分学平均值定理、定积分的计算、在旋转体面积、长度、体积和表面积中的应用、不定积分:Beta 函数和 Gamma 函数、积分符号下的微分。
单元I数学物理学维度分析:微分方程(普通和部分) - 方程顺序 - 梯度,发散,卷曲和laplacian的表达式 - 矢量代数和矢量计算 - 高斯分歧定理 - 格林的定理 - Stokes的定理。矩阵:Cayley - 汉密尔顿定理,矩阵倒数 - 特征值和特征向量。多项式:Hermite,Bessel和Legendre功能。特殊功能:beta和伽马功能。概率:基本概率理论 - 随机变量 - 二项式 - 泊松和正态分布。复杂变量:分析函数 - 奇异点 - 库奇的积分定理和公式-Taylor's和Laurent的扩展,杆子,残基的计算以及积分的评估。积分变换:傅立叶系列和傅立叶变换及其属性。
代数和特征值分析。2。学习与矢量代数和微分方程有关的解决问题的工具。3。学习复杂分析和各种系列4的基础知识。获得有关张量的知识5。To acquire proficiency in integral transform UNIT I Vector Algebra and Calculus: Vector algebra, vector calculus, Green's theorem, Stokes' theorem, Linear algebra, Matrices: operations, determinants, eigenvalues and eigenvectors, diagonalization, linear systems, Cayley-Hamilton Theorem and its applications, Fourier series, Fourier transform.拉普拉斯变换。UNIT II Differential Equations and Special Functions: Linear ordinary differential equations, separable equations, integrating factor methods, linear equations, exact equations, homogeneous and non-homogeneous equations, solution methods (undetermined coefficients, variation of parameters), Runge-Kutta method, Bessel functions, Hermite functions, Legendre polynomials, Laguerre polynomials,这些功能的属性和应用。第三单元复杂分析:复杂分析,分析功能的要素; Taylor&Laurent系列;杆,残基和积分的评估。基本概率理论,随机变量,二项式,泊松和正常分布。中央限制定理。入门群体理论:SU(2),O(3)。单一组的年轻图及其对SU(2)和SU(3)的简单应用。单元IV张量分析:张量代数,线性组合,直接产品,收缩,张量密度,仿射连接的转换,仿射连接的转化,协变量,梯度,梯度,弯曲和差异,Unit-V Green的功能和群体的功能和群体理论:绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,绿色的功能,对点的功能,点,点,绿色的功能,点,点,绿色的功能,点,绿色的功能,点,绿色的功能,点,以绿色的功能,点,以绿色的功能,绿色的功能,点,绿色的功能,点,以绿色的功能,点,绿色的功能,点,以绿色的功能,点,绿色的功能。球形极坐标膨胀,狄拉克三角洲函数。单元V积分转换:傅立叶积分,傅立叶变换定理,卷积定理,动量表示,传递函数,neumann系列,可分离内核,Hilbert-Schmidt理论。
单个变量的函数:Rolle的定理和Lagrange的平均值定理(MVT),Cauchy的MVT,Taylor's和Maclaurin的系列,Asymptotes&Curvature(Cartesian,Polar,极性形式)。(8) Functions of several variables: Function of two variables, Limit, Continuity and Differentiability, Partial derivatives, Partial derivatives of implicit function, Homogeneous function, Euler's theorem and its converse, Exact differential, Jacobian, Taylor's & Maclaurin's series, Maxima and Minima, Necessary and sufficient condition for maxima and minima (no proof), Stationary points, Lagrange's乘数的方法。(10)序列和序列:序列,序列的限制及其性质,一系列积极术语,收敛的必要条件,比较测试,D Alembert的比率测试,Cauchy的根测试,交替的序列,Leibnitz的规则,绝对和条件收敛。(6)积分计算:积分计算的平均值定理,不正确的积分及IT分类,beta和γ功能,在皇家和极地坐标,伦理固体的体积和表面积,皇家和极地的体积和表面积的面积和长度通过双重整合的体积,体积作为三个积分。(10)矢量计算:矢量值及其不同,线路积分,表面积分,体积积分,梯度,卷曲,弯曲,散射,格林定理(包括向量形式),Stokes的定理,Gauss的Divergence定理及其应用。(10)