不稳定性发生在固态复合阴极(SSC)中,该阴极(SSC)由阴极活性材料(CAM),SE和通常碳添加剂的颗粒混合物组成。氧化物和硫化物是SE的两个最精心研究的群体。氧化物类型的SE具有优势,包括高机械强度,高温耐受性,对空气和溶剂的稳定性以及广泛的电化学稳定窗口。11然而,基于氧化物的刚性SE不能在没有高温烧结的情况下在颗粒和晶粒之间形成良好的联系。高温烧结将导致CAM和氧化物之间的不希望的元素分化。12–14因此,在大多数类型的阴极中形成直接的阴极/氧化物部分接触是具有挑战性的。不同于氧化物,基于硫化物的SE具有高离子电导率和低/中等温度下的可变形性,希望将电极处理到高,接近理论密度。15–20然而,硫化物易于在CAM(例如Li(Ni X Co Y Mn 1-X-Y)O 2和Li(Ni X Co Y Al 1-X-Y)O 2)的工作势下氧化。21–23即使凸轮颗粒涂有保护层(例如,氧化物),这些保护层部分钝化了表面,例如电子渗透所需的碳添加剂,例如碳纳米诺纤维(CNF),也可能在氧化硫化物电解质中发挥作用。24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。 26–30凸轮颗粒本身的破裂也可能发生。 每个凸轮都合并24,25在两种情况下,持续的化学相互作用都破坏了保留的能力和可环性。26–30凸轮颗粒本身的破裂也可能发生。每个凸轮都合并从机械上讲,在诱导的插入/提取时,li-ion插入/提取的循环体积变化会导致硫化物SE,CNF和CAM之间的突然或进行性接触损失,从而导致无能力失效和不可逆转的能力损失。31–34为了减轻某些机械效应(以及由于亚最佳电极制备引起的持续孔隙率),细胞可能会在循环测试期间受到超过50 MPa的一层堆栈压力。然而,实践应用需要较低的堆栈压力,例如在电动汽车中,35,36,并且压力过大可能会加速凸轮的损坏并导致LI金属电极的变形。鉴于SSC容量褪色机制的这种复杂性和相互作用,机械降解与化学和电化学侧反应的分离对于阐明发生的各种过程并寻找相应策略至关重要。在这里,我们研究了CAM体积变化和堆叠压力对SSC容量衰减的影响。两种具有相同电压窗口的活性材料,但循环过程中的不同体积变化是Chos的,包括Li 4 Ti 5 O 12(LTO),具有可忽略不计的volume变化和α-NB 2 O 5,其中4%的LI Intercalation in Intercalation 37,38比较了内在的伏特 - UME对已保留能力变化的影响。
自从大约 10 亿年前单细胞祖先出现以来,后生动物目前的多样性是通过漫长的进化过程实现的。这一进化过程产生了大约 35-37 个现存动物门,除脊椎动物亚门外,这些门均由无脊椎动物组成。目前,已描述的现存后生动物种类约为 1,162,000 种,其中只有约 50,000 种是脊椎动物(约 5%)。此外,无脊椎动物能够适应所有类型的生态系统,包括水生和陆地生态系统,因此研究无脊椎动物的多样性和进化对于了解现存动物生物学至关重要。总结无脊椎动物或基于无脊椎动物的研究历史会过于广泛。然而,值得注意的是,自诺贝尔奖创立以来,它曾多次授予使用无脊椎动物模型的研究人员。一些例子包括使用果蝇作为模型的研究(例如,染色体在遗传中的作用、昼夜节律、先天免疫机制、嗅觉受体、早期胚胎发育的遗传控制)、秀丽隐杆线虫(程序性细胞死亡的机制、RNA 干扰)、海胆(细胞周期的关键调节器)、海蛞蝓(神经系统中的信号转导)、蜜蜂(社会和行为模式的组织)、螃蟹(生理和化学视觉过程)、章鱼(涉及神经细胞膜周围和中心部分的兴奋和抑制的离子机制)或水母(用于发现和开发绿色荧光蛋白 GFP)。除了基于无脊椎动物模型的研究有着悠久的历史之外,我们现在生活在一个特殊的时代,主要有两个原因:首先,自从第一个无脊椎动物的完整基因组被测序(2000 年秀丽隐杆线虫的基因组)以来,我们现在可以获得大约 1000 个无脊椎动物物种的完整基因组序列(存放在 NCBI 数据库中);其次,由于 CRISPR/Cas9 或 TALEN 等简单基因组改造技术的发展,我们可以进行一系列功能实验,这在几年前是不可想象的。考虑到所有这些,我们很高兴在这本题为“无脊椎动物的进化”的卷中介绍关于不同无脊椎动物谱系的新颖而有趣的研究,重点关注其生物学的几个方面。本卷包含八篇原创研究文章和三篇评论,它们的重点、想法和假设反映了使用无脊椎动物作为模型生物的研究的当前多样性和未来方向。本书显然无意成为无脊椎动物研究的详尽集合,但我们希望这里介绍的文章集合能够让您对无脊椎后生动物研究的类型和所用动物模型的多样性有一个总体了解。因此,我们可以阅读使用鹿角珊瑚 [ 1 ] 开展的研究,使用几种软体动物开展的研究,例如头足类 Nautilus pompilius [ 2 ]、腹足类 Crepidula fornicata [ 3 ] 或双壳类 Mytilus galloprovincialis [ 4 ],以及使用涡虫 Schmidtea mediterranea [ 5 ] 开展的研究,或者使用几种脊索动物开展的研究,例如两种头索动物(Branchiostoma lanceolatum [ 6 ] 和 Branchiostoma floridae [ 7 ])和两种尾索动物(Ciona robusta [ 8 ] 和 Phallusia mammillata [ 4 ])。如今,从非经典动物模型中获取转录组和基因组数据更加容易,使得基因家族进化的研究更加全面。因此,