摘要:早期的农民正在使用传统的农业方法,这些方法耗时且勤奋,因此我们引入了称为拖拉机的新技术,可以用作耕作/耕种土地的耕种者。一般而言,这些机器的成本更高,污染了我们的环境,对印度农民负担不起,因此我们决定以可承受的价格制作紧凑的便携式电动耕种机(Tiller)机器。这台机器的工作是基于电池和电机机构,该机构可以移动切割机或耕作器。而不是开发基于IC发动机的机制,我们宁愿从事电动机制,因为它是清洁的能源,也不污染环境。我们的大多数印度农民都采用生存农业,他们采用了传统的农业方法。这种农业非常勤奋,而且效率不高,因此我们的基本目的是开发小型便携式耕种机器,该机器转向现代农业方法。本报告描述了提议的模型的设计,制造,制造分析。我们的项目旨在实现高安全性,减少人类的努力,提高土壤耕种者的效率,减少工作负荷,减少工人的疲劳并降低维护成本。关键字:电动机,电池,控制器,差速器,分erer
过量的氮会促进水稻非生产性分蘖的形成,从而降低氮利用效率 (NUE)。通过平衡氮吸收和生产性分蘖的形成来开发高 NUE 水稻品种仍然是一个长期挑战,但这两个过程如何在水稻中协调仍然难以捉摸。在这里,我们将转录因子 OsGATA8 确定为水稻氮吸收和分蘖形成的关键协调因子。OsGATA8 通过抑制铵转运蛋白基因 OsAMT3.2 的转录来负向调节氮吸收。同时,它通过抑制分蘖的负调节因子 OsTCP19 的转录来促进分蘖的形成。我们将 OsGATA8 -H 确定为高 NUE 单倍型,具有增强的氮吸收和更高比例的生产性分蘖。OsGATA8- H的地理分布及其在历史种质中的频率变化表明其适应肥沃的土壤。总体而言,这项研究为NUE的调控提供了分子和进化方面的见解,并有助于培育具有更高NUE的水稻品种。
摘要:金字塔形、直立或直立生长的植物形态的特点是枝条和叶子的分枝角度较窄。直立叶子和枝条习性的优势可能是光线更有效地穿透较低的冠层。已经报道了包括桃树在内的各种树种的金字塔基因型。旁系同源水稻直系同源物 TILLER ANGLE CONTROL 1 (TAC1) 被认为是负责直立生长的基因。然而,对于任何金字塔树种基因型,尚未真正证明 TAC1 基因的敲除突变会导致植物金字塔形生长。通过计算机分析,我们在 P. trichocarpa 基因组中发现了一个假定的水稻 TAC1 直系同源物(Potri.014G102600,“TAC-14”)及其旁系同源物(Potri.002G175300,“TAC-2”)。通过应用转基因 CRISPR/Cas9 方法成功敲除 P. × canescens 克隆 INRA 717-1B4 中的两个假定的 PcTAC1 直系同源物。在温室中对突变体进行了为期三年的分子分析和表型分析。我们的结果表明,“TAC-14”的纯合敲除足以诱导 P. × canescens 中的金字塔形植物生长。如果在短轮伐期林(SRC)上种植多达两倍的金字塔树种,那么可以提高木材产量,无需任何育种,只需增加默认田地面积上的树木数量即可。
差速转向系统。差速转向在转弯时保持对两条履带的动力。当一条履带加速而另一条履带减速相同量时,拖拉机转弯。操作员可以同时转向和控制变速箱,这可以在某些应用中减少循环时间。差速转向舵杆具有用于升档和降档的触摸换档按钮。舵杆本身可以轻松向前或向后旋转以改变相应的拖拉机方向。向前移动可将拖拉机转向左侧,向后拉可向右移动。低舵杆力确保操作员在长时间换档期间感到舒适。大型铲刀负载可以绕过建筑物、桥台、树木或其他障碍物。转向调制也针对这些应用中的精确控制进行了优化。由于两条履带在转弯时均有动力,因此在陡坡上的软地面条件下可以实现更大的负载能力、功率和速度控制。
研究GS3基因的敲除是否影响农艺性状,维护者GM1B和GM2B的主要相关农艺性状是表征和比较。特征在内,包括晶粒长度,晶粒宽度,晶粒长度与宽度的比率,圆锥花序长度,每个圆锥花序的晶粒数,每个圆锥花序的晶粒数,种子设定速率,1000粒度,有效的tiller数,有效的tiller数,在活动阶段,植物的高度,每工厂的植物高度和重量,并在图5和表3中显示了数据。结果的统计分析表明,GM1B和GM2B在分丁式数量,晶粒宽度和每个圆锥花序填充的晶粒数中没有显着差异,但是晶粒长度,1000晶粒重量和每个圆锥花序的晶粒数量分别增加了7.9%,7.7%,7.7%和25.5%。与GM1B相比,尽管GM2B的种子设定速率降低了13.6%,但其每工厂的重量显着增加了14.9%。每植物的谷物产量期限,在相应的CMS线(GM1A和
Gernot Marx,1.2 Johannes Bickenbach,1.2 Sebastian Johannes Fritsch 16,1.2,3 Julian Benedict Kunze ϕ,1.2 Oliver Maassen,1.2 Saskia Deffge,Saskia Deffge,Saskia Deffge,1.2 Jennifer Kistermann,1.2 Jennifer Kistermann,1.2 Silke Haferkamp,2.4 Irina Lutz,2.4 Irina Lutz,2.4 nora nora,2,44 nora,2,44 nora kark,2,44.4 Volker Lowitsch, 2.5 Richard Polzin, 2.6 Konstantin Sharafutdinov, 2.6 Hannah Mayer, 2.7 Lars Kuepfer, 2.7 Rolf Burghaus, 2.7 Walter Schmitt, 2.8 Joerg Lippert, 2.8 Morris Riedel, 2.3 Chadi Barakat, 2.3 André Stollenwerk, 2.9 Simon Fonck, 2.9 Christian Putsen,, 2.10 Sven Zenker,2.10,11 Felix Erdfelder,2.10.11 Daniel Grigutsch,2.10.11 Rainer Kram,2.12 Susanne Beyer,2.13 Knut Kampe,2.1 Jan Erik Diehr,2.15,2.15 Friederike Salman,2.14 Patrick Juers,2.14 Patrick Juers,2.14 Daniel Tiller,2.14 Daniel Tiller,2.14 Daniel Tiller,Emilia,2.16 Emilia,Emilia,2.14 Daniel,Emilia,Emilia,2.14 Daniel,Emilia,Emilia,2.14 Daniel,Emilia,Emilia,2.14 Daniel Emial, Wisotzki,2,16 Sebastian Gross,2.17 Lorenz Homeister,2.17 Frank Bloos ϕ,2.18AndréScheragϕ,2.19 Danny Ammon,2.20 Susanne Mueller,2.19 Julia Palm ϕ 2.22 Thomas Wendt,2.23 Tobias Schuerholz,2.24 Petra Groeber,2.25 Andreas Schuppert 2.6
该命令是耕种头类型控件。,由于人体工程学的形状和组织良好的命令,它确保了适当的设备处理。它可以在两个方向(向前和向后)中控制速度。为了安全起见,控件包括一个腹部按钮。
摘要:GT2-LIKE1(GTL1)基因是气孔发育的负调控基因,它调节植物气孔的数量。CRISPR/Cas9 系统已用于改造OsGTL1启动子。本研究旨在筛选出带有OsGTL1启动子改造的无Cas9水稻。设计Cas9特异引物对8个T 3 水稻品系的所有分蘖进行Cas9筛选。只有一个T 3 品系在所有分蘖中都是无Cas9的,而8个品系中有3个品系的所有分蘖中都有Cas9。从5个独立品系中可获得无Cas9分蘖的种子。改造植株与野生型(WT)的叶绿度、每株分蘖数和每株叶子数无显著差异。然而,8个改造品系中有7个品系的叶片显著小于WT。一些无Cas9植物中OsGTL1启动子的核苷酸序列揭示了OsGTL1启动子的修饰,包括在目标区域内的小的缺失、插入和大的缺失。
摘要:分蘖角度是决定禾谷类作物株型和产量的重要性状。在重力刺激下,分蘖角度部分由LAZY1(LA1)蛋白在细胞核和质膜之间的动态重新分配来控制,但其潜在机制尚不清楚。在本研究中,我们基于对水稻(Oryza sativa L.)扩散分蘖突变体la1 G74V的分析,鉴定并描述了LA1的一个新的等位基因,该突变体在该基因预测的跨膜(TM)结构域编码区中发生非同义突变。该突变导致地上部重力性完全丧失,从而导致植物匍匐生长。我们的研究结果表明,LA1不仅定位于细胞核和质膜,而且定位于内质网。去除LA1中的TM结构域会使植物表现出与la1 G74V相似的扩散分蘖表型,但不影响质膜定位;因此,它与玉米中的直系同源物 ZmLA1 有区别。因此,我们认为 TM 结构域对于 LA1 的生物学功能是必不可少的,但该结构域并不决定蛋白质在质膜上的定位。我们的研究为 LA1 介导的地上性调控提供了新的见解。