允许将本工作的全部或一部分供个人或课堂使用的数字或硬副本授予,而没有费用,只要副本不是盈利或商业优势,并且副本带有此通知和首页上的完整引用。必须尊重他人所拥有的这项作品的组成部分的版权。允许用信用摘要。否则复制或重新出版以在服务器上发布或重新分配到列表,需要事先特定的许可和/或费用。请求权限从permissions@acm.org。AutomotiveUI '18兼职,2018年9月23日至25日,加拿大安大略省多伦多©2018版权所有由所有者/作者持有。出版权许可获得ACM的权利。ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418ACM 978-1-4503-5947-4/18/09…$ 15.00 https://doi.org/10.1145/3239092.3267418
●模块I差分计算:审查极限,不确定形式和L'Hospital的规则。连续性和不同性。平均值定理和应用,Taylor的定理,Maxima和Minima。●模块II真实序列和序列:序列和串联,LIMSUP,LIMINF,序列的收敛以及一系列实数,绝对和条件收敛。●模块III积分计算:Riemann积分,积分计算的基本定理,确定积分的应用,不正确的积分,beta和γ函数。●模块IV高级演算:几个变量的功能,极限和连续性,部分衍生物和不同性,链规则,均匀函数以及Euler定理。Taylor的定理,Maxima和Minima以及Lagrange乘数的方法。●积分计算的模块V应用:双重和三个集成,Jacobian和变量公式的更改。曲线和表面的参数化。在集成符号下具有恒定和可变限制和应用的差异。
摘要在计算组织病理学领域,计算机辅助诊断系统对于获得各种疾病的患者诊断和有助于精确医学很重要。因此,已经报道了许多关于数字病理图像的自动分析方法的研究。在这项工作中,我们讨论了一种自动提取和疾病阶段分类方法多形胶质母细胞瘤(GBM)组织病理学图像。在本文中,我们使用深层卷发神经网络(深CNN)同时获取功能描述符和分类方案。此外,在这个充满挑战的分类问题中,与其他流行的CNN进行了客观和定量的比较。使用癌症基因组图像的胶质瘤图像的实验表明,我们的网络平均分类准确性为96:5%,而对于更高的交叉验证,其他网络的性能相似,较高的精度为98:0%。深CNN可以以高精度从GBM组织病理学图像中提取显着特征。总的来说,具有深CNN的组织病理学图像的GBM疾病阶段分类非常有前途,并且在大规模组织病理学图像数据的可用性中,深CNN非常适合解决这个挑战性问题。
项目建议中所述的目标是(i)模拟自动环境DNA(EDNA)采样器/分析仪和(ii)Edna与成像数据的交叉引用。但是,在项目计划期间,这些目标经过修改以适应现场和实验室后勤的可能性。焦点是朝着比较主动和被动的EDNA采样方法的转移,以比较它们在从环境中捕获鱼DNA的有效性。通过过滤海水将短期目标确定为主动样品收集,并通过部署和检索被发行和“自制”设备的被动采样器来收集被动样本。为了比较方法,从样品中提取Edna并使用实时定量PCR(QPCR)测定法进行扩增,以验证FISH DNA的存在和数量。该项目的媒介和长期目标包括用于主动和被动EDNA采样的有效抽样方案的定义,以及提供采样方法在描述当地物种丰富度/生物多样性方面更有效的建议。这些
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
Custombag 是一家专注于订购和销售定制包的企业。这个商业想法源于与塑料使用相关的社会问题。 Custombag 的主要目标之一是提高印度尼西亚人民的意识,减少塑料的使用,以减少全球变暖的影响。 Custombag 是一种由帆布制成的环保袋产品,可以根据客户要求进行设计。该企业采用商业模式画布(BMC)方法,主要关注由学生和家庭主妇组成的客户群体。
BMEE215L工程优化3 1 0 4基本科学和数学24 BMEE330L控制系统3 0 3 0 3 L T P C BMEE308P微控制器和交互式0 0 2 1 BPHY101L工程物理学3 0 0 0 0 0 0 3 LAB BPHY101P ENGINEERING BLEN INTILLERIC Chemistry 3 0 0 3 BCHY101P Engineering Chemistry Lab 0 0 2 1 Discipline Core Courses 49 BMAT101L Calculus 3 0 0 3 BMAT101P Calculus Lab 0 0 2 1 BMEE202L Mechanics of Solids 3 0 0 3 BMAT102L Differential Equations and 3 1 0 4 BMEE202P Mechanics of Solids Lab 0 0 2 1 Transforms BMEE203L Engineering Thermodynamics 2 1 0 3 BMAT201L复杂变量和线性3 1 0 4 BMEE204L流体力学和机器3 0 0 3代数BMEE204P流体力学和机器0 0 2 1 BMAT202L概率和统计概率和统计3 0 0 0 0 3实验室BMAT202P BMAT202P概率和统计局概率0 0 2 1 BMEE 2 1 BMEE20 0 0 2 BMEE20 0 0 4 4 2
摘要 - 量词计算引入了一种新的计算范式,该范式有望解决无法通过经典计算机效率解决的问题。因此,量子应用程序将越来越多地集成到经典应用中。要将这些复合应用程序带入生产中,需要进行自动部署和编排技术,以避免手动易行错误和耗时的过程。对于非量化应用程序,近年来已经开发了各种部署技术。但是,量子应用程序的部署目前与非量子应用程序显着不同,因此导致了用于部署量子应用程序的不同建模程序。为了克服这些问题,我们提出了TOSCA4QC,该TOSCA4QC介绍了两种部署建模样式,该模型基于拓扑和编排规范的云应用程序(TOSCA)标准(TOSCA)标准,用于自动化量子应用的部署和编排:(i)SDK规格模型的模型,以覆盖所有技术模型,以涵盖所有技术部署详细信息(II)技术的详细信息(II)详细信息(II)详细信息(II)详细信息(II)。原则。我们进一步展示了如何将现有的模型驱动开发(MDD)方法应用于将SDK-静态模型重新定为可执行的SDK特定模型。我们证明了原型实施的实际可行性,作为Tosca生态系统Opentosca的扩展以及IBMQ和量子模拟器的三个案例研究。索引术语 - Tosca,量子计算,部署自动化,建模,编排
简介:慢性心力衰竭导致许多患者住院,尤其是那些年老且不遵守治疗 1 的患者。这种住院通常可以通过前几周体重增加 2 和外周水肿增加来预测。对于不遵守每日体重记录的患者,我们假设从零依从性全自动远程监控解决方案中收集可靠的数据以评估外周水肿将减少住院并改善护理。
