开花时间的控制对于生殖成功至关重要,并且对农作物中种子和果实产量以及其他重要的农业特征具有重大影响。核因子Y(NF -ys)是形成异三聚体蛋白复合物的转录因子,以调节各种生物过程所需的基因表达,包括植物中的开花时间控制。据我们所知,尚无关于促进植物早期开花表型的单个NF-YA亚基突变体的报道。在这项研究中,我们确定了编码NF-Y转录因子家族成员的SLNF-YA3B,是调节番茄开花时间的关键基因。NF-YA3B的敲除导致番茄的早期开花表型,而NF-YA3B的过表达延迟了转基因番茄植物的开花。NF-YA3B被证明在酵母三杂化测定中与多个NF-YB/NF-YC异二聚体形成异三聚体蛋白复合物。生化证据表明,NF -YA3B直接与单个花桁架(SFT)启动子的CCAAT顺式元素结合以抑制其基因表达。这些发现发现了NF-YA3B在调节番茄开花时间中的关键作用,并且可以应用于农作物中开花时间的管理。
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。
采用人工光照的植物工厂比露天种植受作物栽培环境因素的影响更小,作为解决世界粮食问题的解决方案之一而受到关注。然而,植物工厂的栽培成本高于露天种植,目前,工厂化种植的有利可图的作物品种仅限于那些体型较小或生长期较短的品种。番茄是世界各地主要消费作物之一,但由于其株高和株宽较大,尚不适合在植物工厂中大规模生产。本研究利用 CRISPR–Cas9 方法对 GABA 超积累番茄品种#87-17 的 DWARF( D ) 和 SELF-PRUNING( SP ) 基因进行基因组编辑,以生产矮化番茄植株。在 T 1 基因组编辑代中获得了所需性状,果实性状与原始品种几乎相同。另一方面,含有 d 和 sp 突变的 #87-17 与 Micro-Tom 之间的 F 2 杂交品种矮化,但果实表型是两个品种性状的混合。这表明使用 CRISPR–Cas9 对这两个基因进行基因组编辑可以有效地赋予适合植物工厂化栽培的性状,同时保留原始品种的有用性状。
番茄 ( Solanum lycopersicum ) 是一种全球性种植的作物,具有巨大的经济价值。外果皮决定了番茄果实的外观,并在收获前和收获后保护其免受各种生物和非生物挑战。然而,目前还没有番茄外果皮特异性启动子,这阻碍了基于外果皮的基因工程。在这里,我们通过 RNA 测序和逆转录-定量 PCR 分析发现番茄基因 SlPR10 ( PATHOGENESIS RELATED 10 ) 在外果皮中大量表达。由 2087-bp SlPR10 启动子 ( pSlPR10 ) 表达的荧光报告基因主要在 Ailsa Craig 和 Micro-Tom 品种的转基因番茄植株的外果皮中检测到。该启动子进一步用于番茄中 SlANT1 和 SlMYB31 的转基因表达,它们分别是花青素和角质层蜡质生物合成的主要调节因子。pSlPR10 驱动的 SlANT1 表达导致花青素在外果皮中积累,赋予果实抗灰霉病和延长保质期,而 SlMYB31 表达导致果皮蜡质增厚,延缓水分流失并延长果实保质期。有趣的是,pSlPR10 和另外两个较弱的番茄外果皮优先启动子在转基因拟南芥 (Arabidopsis thaliana) 植物的子房中表现出一致的表达特异性,这不仅为番茄外果皮和拟南芥子房之间的进化同源性提供了线索,而且为研究拟南芥子房生物学提供了有用的启动子。总的来说,这项研究报告了一种理想的启动子,能够在番茄外果皮和拟南芥雌蕊中实现靶基因表达,并证明了其在番茄果实品质遗传改良中的实用性。
摘要:该系统评价涉及在神经退行性疾病的症状干预措施中lactiplantibacillus(Lactobacillus)的使用。肠道菌群营养不良的存在与神经退行性疾病中存在的全身性炎症过程有关,为新治疗策略创造了机会。这涉及修改构成肠道菌群的菌株,以通过肠脑轴增强突触功能。最近的研究评估了单独或组合使用lactiplantibacillus plantarum对运动和认知症状学的有益作用。此系统评价包括20篇研究文章(人类中的n = 3,动物模型中的n = 17)。这项研究的主要结果是单独使用lactiplantibacillus plantarus或组合使用与神经退行性疾病有关的症状学改善。然而,其中一项研究包括在乳杆菌plantarum术后报道了负面影响。这项系统评价提供了有关这种益生菌在呈现神经退行性过程(例如阿尔茨海默氏病,帕金森氏病和多发性硬化症等神经退行性过程的)中的当前和相关信息。
记录版本:该预印本的版本于 2024 年 2 月 24 日在 Scienti¦c Reports 上发布。已发布的版本请参阅 https://doi.org/10.1038/s41598-024-55088-4 。
通过分析印度泰米尔纳德邦的Costa de Chennai渔港收集的标本的DNA棒法规。 div>测序了具有650 bp区域的细胞色素线粒体氧化酶(MTCOI)的亚基I基因,用于系统发育分析。 div>在此记录中,线粒体基因序列用于鉴定螳螂虾。 div>这是印度水域中DNA棒法规的第一个确认记录,其MTCOI序列沉积在Genbank中。 div>邻居加入方法用于遗传边缘分析。 div>用五个密切相关的物种计算出的遗传距离在0.01至0.094%之间。 div>形态学和分子分析证实,收集的副本对应于Maculata。 div>
Micro-Tom 芽的突变率为 100%,而 AC 芽的突变率仅为 42.9%。与 Micro-Tom 不同,AC 编辑植物未报告产生单性结实果实(Tran 等人,2021 年;Ueta 等人,2017 年)。表 1 和表 2 表明,在测试的 ET 系群体中,转化和编辑效率都存在很大差异。虽然其中一些系具有相同的亲本来源,但它们的外来构建体采用潜力水平并不相同。值得注意的是,在 ET5 和 ET8 等优良系中,使用 pANT1ox 质粒和 pEG-IAA9 的转化效率密切相关(表 1 和补充表 1)。ET5 平均每个外植体呈现 16.88 个紫色斑点,21% 的 pEG-IAA9 转化植物具有 T-DNA 插入。ET8 中的这些数字分别为 14.32 和 33.33%。这两个品系对外来基因转化反应良好,是用作遗传改造技术材料的最佳 F8 ET 品系。在这两个品系中,ET5 表现出更高的编辑效率,表现为 G0 群体中单叶和无籽植物的数量(表 1)。然而,ET8 的高生产力和存活率有利于该品系保持和转移编辑的等位基因到下一代(表 3)。对于商业基因组编辑番茄的产生,ET8 是最佳推荐选择,它提供了高产量、高转化效率和低果实开裂率等有益特性(Nguyen 等人,2023 年)。
胞嘧啶和腺苷碱基编辑器(CBE和ABE)在植物中得到了广泛的应用,极大地促进了基因功能研究和作物育种。目前的碱基编辑器可以实现高效的A到G和C到T/G/A的编辑。然而,高效且可遗传的A到Y(A到T/C)编辑仍有待在植物中开发。本研究构建了一系列适用于单子叶植物和双子叶植物的A到K碱基编辑器(AKBE)系统。此外,用无PAM的Cas9变体(nSpRY)替换nSpCas9,以扩大AKBE的靶向范围。利用 18 个内源基因座上的 AKBE 编辑的 228 株 T 0 水稻和 121 株 T 0 番茄植物的分析表明,除了高效的 A 到 G 替换(平均 41.0%)之外,植物 AKBE 还可以实现 A 到 T 的转换,在水稻和番茄中的效率分别高达 25.9% 和 10.5%。此外,水稻优化的 AKBE 在水稻中产生 A 到 C 的转换,平均效率为 1.8%,揭示了植物优化的 AKBE 在创造遗传多样性方面的重要价值。虽然大多数 A 到 T 和 A 到 C 的编辑是嵌合性的,但所需的编辑类型可以传递给 T 1 后代,类似于传统 ABE8e 产生的编辑。此外,利用AKBEs靶向酪氨酸(Y,TAT)或半胱氨酸(C,TGT)实现了引入靶基因的早期终止密码子(TAG/TAA/TGA),展示了其在基因破坏中的潜在用途。
f i g u r e 3的α-替丁氨酸和番茄和菌落形成单元(CFU)的含量取决于伪 - 裂圈系统的距离。α-替代(4 mM)。(a)在距人造根每5 mm的距离内,α-替丁氨酸和番茄的浓度。红色条代表α-替代的含量;紫色条代表番茄的内容。分别使用Tukey的测试分别为tomatine和tomatidine的内容分别表示统计上显着的差异(tomatine; tomatine; a - b)在统计上具有显着差异(p <.05)。(b)CFU在距人造根每5 mm的距离内在土壤中计数。蓝色条代表渗出条件,红色条代表α-替代的条件。使用Tukey的测试,不同的字母(A - C)表示菌落形成单元数的统计学显着差异(P <.05)。错误条表示标准偏差(所有样本,n = 4)。