1. 状态表示 . ...非量子比特系统的表示 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 157
与所有 X 射线一样,体内致密结构(如骨骼)易于成像,而软组织对 X 射线的阻挡能力各不相同,因此可能较暗或难以看见。因此,已开发出在 X 射线或 CT 扫描中清晰可见且可安全用于患者的造影剂。造影剂含有可阻挡 X 射线的物质,因此在 X 射线图像上更清晰可见。例如,为了检查循环系统,需要将以碘为基础的静脉 (IV) 造影剂注入血液以帮助照亮血管。这种类型的检查用于寻找血管(包括心脏血管)中的可能阻塞物。口服造影剂(如钡基化合物)用于对消化系统(包括食道、胃和胃肠道 (GI))进行成像。
• W/L = Right +Left mouse • Zoom In = Middle mouse depress & hold + push entire mouse forward • Zoom Out = Middle mouse depress & hold + pull entire mouse back • Pan = right mouse hold and drag • Slice or page through volume data set = middle + right mouse • Page through MPR's = left mouse • Isocenter from 2D: Alt + left click on area of interest & will center all planes • Isocenter on 3D view = Alt + left click OR middle mouse depress and释放感兴趣的区域
与经典电子不同,量子态以难以测量而著称。从某种意义上说,电子的自旋只能处于两种状态之一,即向上或向下。通过简单的实验可以发现电子处于哪种状态,对同一电子的进一步测量将始终证实这一答案。然而,这幅图景的简单性掩盖了电子复杂而完整的本质,电子总是处于两种状态之一,而状态会根据测量方式而变化。量子态断层扫描是一种使用许多相同粒子的集合来完全表征任何量子系统(包括电子自旋)的过程。多种类型的测量可以从不同的特征基重建量子态,就像经典断层扫描可以通过从不同的物理方向扫描三维物体来对其进行成像一样。在任何单一基础上进行额外的测量都会使该维度更加清晰。本文主要分为两部分:层析成像理论(第一部分和第二部分)和光子系统的实验层析成像
摘要 随着量子系统平台的快速发展,噪声量子态的多体量子态重建问题成为一个重要挑战。人们对使用生成神经网络模型来解决量子态重建问题的兴趣日益浓厚。在这里,我们提出了“基于注意力的量子断层扫描”(AQT),这是一种使用基于注意力机制的生成网络进行量子态重建的方法,它可以学习噪声量子态的混合态密度矩阵。AQT 基于 Vaswani 等人(2017 NIPS)在“注意力就是你所需要的一切”中提出的模型,该模型旨在学习自然语言句子中的长程相关性,从而超越以前的自然语言处理(NLP)模型。我们不仅证明 AQT 在相同任务上的表现优于早期基于神经网络的量子态重建,而且证明 AQT 可以准确地重建与 IBMQ 量子计算机中实验实现的噪声量子态相关的密度矩阵。我们推测 AQT 的成功源于它能够对整个量子系统中的量子纠缠进行建模,就像 NLP 的注意力模型能够捕捉句子中单词之间的相关性一样。
现在,通过实验可以纠缠数千个量子比特,并在不同基础上高效地并行测量每个量子比特。要完全表征一个未知的 n 个量子比特的纠缠态,需要对 n 进行指数次数的测量,这在实验上即使是对于中等规模的系统也是不可行的。通过利用 (i) 单量子比特测量可以并行进行,以及 (ii) 完美哈希家族理论,我们表明,最多只需 e O ( k ) log 2 ( n ) 轮并行测量即可确定 n 量子比特状态的所有 k 量子比特约化密度矩阵。我们提供了实现这一界限的具体测量协议。例如,我们认为,通过近期实验,可以在几天内测量并完全表征 1024 个量子比特的系统中的每个 2 点相关器。这相当于确定近 450 万个相关器。
现在,通过实验可以纠缠数千个量子比特,并在不同基础上高效地并行测量每个量子比特。要完全表征一个未知的 n 个量子比特的纠缠态,需要对 n 进行指数次数的测量,这在实验上即使是对于中等规模的系统也是不可行的。通过利用 (i) 单量子比特测量可以并行进行,以及 (ii) 完美哈希家族理论,我们表明,最多经过 e O (k = log 2 = n) 轮并行测量就可以确定 n 个量子比特状态的所有 k 量子比特约化密度矩阵。我们提供了实现这一界限的具体测量协议。例如,我们认为,通过近期实验,可以在几天内测量并完全表征 1024 个量子比特的系统中的每个两点相关器。这相当于确定近 450 万个相关器。
摘要:一个名为plexciton的准粒子来自等离子体和分子激子之间的杂交,这些杂交在灭绝,散射和反射光谱方面表现出特征的光谱特征,例如Fano共振和RABI分裂。然而,对丛杂种中荧光特性的理解尚不清楚,尤其是对于非线性上将的排放。在这封信中,我们准备了三个组成的丛杂种杂交体,该杂种与两种氰胺染料(CY3和CY5)耦合到AG纳米结构膜并研究了它们增强的非线性辐射,包括两光子发光(TPL),第二谐波(TPL),第二谐波生成(SHG)(SHG)和表面增强的Raman Raman Raman散射(Sersserssers)。丛杂种显示出分裂的灭绝频谱,其中五个峰与二聚体染料的杂种诱导的五峰,并带有Ag膜的表面等离子体共振。在1260 nm的激光激发下,(Cy3-cy5)/ag混合动力车的TPL增强了6.3倍,与Cy5/ag的两种组件混合体相比,SHG的增强率为5.1倍。我们的实验结果为设计和制造具有高效的非线性辐射设计和制造多组分丛设备提供了宝贵的见解。丛杂种,其特征在于其特征灭绝的特性和很大程度上增强的上流发射,对非线性光学,量子信息处理,生物医学感应和光化学的应用有很大的希望。关键字:等离子体,分子激子,多组分,两光子发光,第二谐波产生,表面增强的拉曼散射
电阻抗断层扫描 (EIT) 是一种新兴的成像技术,在许多领域都具有巨大潜力,尤其是在功能性脑成像应用方面。高速、高精度的 EIT 系统可以应用于多种医疗设备,用于诊断和治疗神经系统疾病。在这项研究中,EIT 算法和硬件得到了开发和改进,以提高重建图像的准确性并缩短重建时间。由于多路复用器设计的限制,EIT 测量会受到开关周期内充电和放电的强烈电容效应,大约每 1280 个样本(10 毫秒采样)有 300 到 400 个样本。我们开发了一种算法,可以选择性地选择处于稳态的数据。这种方法提高了信噪比,并产生了更好的重建图像。我们开发了一种有效同步数据起点的算法,以提高系统速度。本演讲还介绍了基于德州仪器定点数字信号处理器 - TMS320VC5509A 的 EIT 系统硬件架构,该处理器成本低,未来在社区中具有很高的普及潜力。为了提高运行速度,我们建议 EIT 系统使用德州仪器的 Sitara™ AM57x 处理器。