摘要:光谱计算机断层扫描标志着医学成像的革命性进步,提供了组织表征和诊断准确性的显着改善。使用双能X射线技术,该方法根据其原子数和电子密度区分材料。频谱成像可从多个能级中获取数据,从而更详细地描绘组织结构,并增强对各种病理状况的识别和理解。与传统成像不同的是依赖于单个能级的传统成像,该方法产生的图像具有多样的对比度,从而可以区分标准扫描中可能看起来相似的组织。本评论探讨了有关光谱计算机断层扫描的发表研究和研究的各种集合,利用了同行评审的期刊和学术教科书,专门研究双能量成像系统,探测器创新和临床应用。获得了所获得的见解,以提供有关此成像技术的基本原理,技术进步和临床实用性的全面概述。强大的搜索策略和明确定义的纳入标准可确保选择高质量的相关资源,以支持本综述中得出的结论。本文旨在对光谱计算机断层扫描的基本原理,技术创新和临床应用进行全面概述。这种能力对于检测和分析各种病理问题(包括肿瘤,血管异常和退化性疾病)特别有价值。2。检测器技术的最新进步显着提高了光谱成像系统的灵敏度和分辨率。这些改进会导致更清晰,更精确的图像,并减少噪声。高级图像重建算法的结合具有进一步的图像质量,从而更好地可视化复杂的解剖学特征,对于准确的诊断和有效的治疗计划至关重要。此外,增强的软件功能现在可以详细介绍组织特性的定量分析,例如衰减系数,有助于评估组织组成并区分良性和恶性生长。光谱计算机断层扫描中的进步代表了医学成像中的关键演变,从而显着提高了诊断评估的准确性和细节。利用双能系统和创新技术,可以实现先进的组织表征,促进知情的临床决策。其广泛的临床应用突出了其在各种专业中的重要性,从而提高了有效诊断和管理各种疾病的能力。随着研究和技术的继续发展,它将在实现更好的健康成果中发挥越来越重要的作用。关键字:计算机断层扫描,光谱成像,组织表征,双能X射线系统1。引言自从五十年前作为一种非侵入性诊断方法首次亮相以来,计算机断层扫描(CT)经历了重大发展。现代CT研究的关键领域是光谱成像,它利用多色X射线的能量信息来增强组织表征。虽然Spectral CT源于早期CT技术,但由于技术的改进,其临床采用率在过去的十年中已大大增长,这使其实际上更可行(Krauss,B。,2015年)。ct数是由X射线的衰减确定的,X射线受材料的质量密度和有效原子数的影响。光谱CT使用数学技术分别计算质量密度和有效原子数,从而收集多个能级的数据。双能计算机断层扫描(DECT)的出现具有显着高级的CT技术,可以解决组织表征的先前局限性,而新的光子计数检测系统为多能成像的进一步改善提供了潜力(Gutjahr,R。,R。,2016年)。本文的目的是对光谱计算机断层扫描的核心原理,技术进步和临床应用进行深入探索。方法本综述研究了一系列关于光谱计算机断层扫描的已发表的研究和研究,这些研究来自同行评审的期刊和学术教科书,这些期刊和学术教科书着眼于双能CT系统,探测器技术,
伯基特淋巴瘤(BL),弥漫性大B细胞淋巴瘤(DLBCL)和原发性纵隔B细胞淋巴瘤(PMBCL)是儿童和年轻人的常见肿瘤(1)。尽管化学疗法可以显着提高生存率,而无事件的生存率为5年,但对于那些对前线化学疗法复发或反应不佳的患者的预后较差[总生存率(OS)率≤25%](2)。高剂量化疗可能会诱导延迟作用,包括继发性恶性肿瘤,慢性健康状况和不育(3,4)。作为一种新型的免疫治疗,嵌合抗原受体(CAR)T细胞治疗在许多类型的恶性肿瘤中取得了显着的效果,尤其是在复发或难治性的大B细胞淋巴瘤(LBCL)中,并且治疗效应可以持续使用(5-7)。但是,大多数患者确实会经历复发(8,9)。细胞因子释放综合征(CRS)和免疫效应物细胞相关的神经毒性综合征(ICAN)是常见的与免疫相关的不良事件,必须密切监测,因为它们可能是致命的(10)。因此,重要的是要鉴定预后较差的患者,并且在服用T细胞治疗之前有严重不良反应的风险。作为形态和功能成像的组合,
Saptarshee Mitra,Raphael Paris,Laurent Bernard,RémiAbbal,Pascal Charrier等。应用于海啸沉积物的X射线图:优化的图像处理和粒度,粒度,粒度形状和沉积物的定量分析3D。海洋地质学,2024,470,pp.107247。10.1016/j.margeo.2024.107247。hal-04514532
kleine – Levin综合征是一种罕见的疾病,其特征是重新呼吸症的复发性发作,认知障碍,伴奏,脱离和行为扰动。在发作之间,大多数患者的睡眠,情绪和行为正常,但在脑功能成像中可能存在一些残留异常。 however, the frequency, localization and significance of abnor- mal imaging are unknown, as brain functional imaging have been scarce and heterogenous [including scintigraphy 18F-fluorodeoxyglu- cose positron emission tomography/computerized tomography (FDG-PET/CT) and functional MRI during resting state and cognitive ef- fort] and based on case reports or on group analysis in small groups.使用在克莱恩 - 列文综合征诊断时的18F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描术的视觉分析,我们检查了一项横截面研究中虚弱和超级代谢的频率,定位和临床决定因素。在179例Kleine-Levin综合征患者中,接受了18F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描,视觉分析仅限于在无症状期间研究的138名未经治疗的患者。多达70%的患者患有缺失代谢,主要影响后缔合皮质和海马。缺乏代谢与年龄较小,最近(<3年)的病程和上一年中较高的发作有关。在该疾病开始时,低代谢率更广泛(从左边的枕骨连接到整个同型外侧,然后是双侧后缔合性皮层)。相比之下,前额叶背侧皮层有多代谢,其中一半的患者(几乎所有患者在后部地区都有伴随性的低甲状酸酯),这也与年龄较小和较短的疾病病程有关。认知表现(包括情景记忆)在患有海马低代谢的患者中相似。总而言之,在无症状kleine – levin综合征期间,对18F-氟脱氧葡萄糖正电子发射断层扫描/计算机化的tomog-raphy的个人视觉分析经常观察到低代谢。它主要影响后缔合皮质和海马,主要是在最近发病的年轻患者中。低代谢在克莱恩 - levin综合征的第一年期间提供了特征标记,这可以在诊断过程中帮助临床医生。
1纳米工程系,加利福尼亚州圣地亚哥分校,加利福尼亚州拉霍亚,美国92093,美国2劳动力DeRéactivitéet Chimie et Chimie des Solyes(LRCS) Electrochimique de l'Energie(RS2E),CNRS 3459,Hub de l'Energie,80039,法国Amiens,Amiens,4个国家可再生能源实验室,15013年,丹佛West Parkway,Golden,Golden,Golden,Golden,Golden,Colorado 80401,美国,美国,美国50401年,美国50401年,美国综合大学。和工程,加利福尼亚大学圣地亚哥分校,加利福尼亚州,美国92093,美国7 Alistore-Eri欧洲研究所,CNRS FR 3104,Hub de l'Energie,80039法国阿米恩斯,法国80039,法国80039 Institut Institut Universiatut de France de France de France de France de France,75005 Paris,France 9 Heptrance 9 Hypero Scientipic scientipic sciential 5 pariuts Scientipic nestripicigantificientiphipic fishericigicatific 5美国加利福尼亚州加利福尼亚大学加利福尼亚大学加利福尼亚大学92093,美国加利福尼亚大学可持续电力与能源中心(SPEC) *相应的作者:jdoux@eng.ucsd.edu),shmeng@ucsd.edu(Y。S. M.)关键字:特征,断层扫描,建模,机器学习,人工智能,内部内实验,相关显微镜
许多上述系统可以以颗粒物质的形式存在,其中诸如形态,布置,组成和孔隙率等参数控制其功能特性。颗粒可以表现出内在的内部孔网络。另外,以聚集的形式或填充成颗粒,柱或反应时,会从其填料结构中创建其他颗粒孔隙空间。当将这些不同的孔隙空间组合在一起时,会出现分层孔系统,可以根据运输,反应动力学或动态吸附来量身定制以提供增强的性质。[3,5,14]评估粒子和孔统计的评估,例如粒子和孔径,互连性,折磨或封闭/开放式孔隙率是表征和随后优化此类材料的关键。单个颗粒,它们作为功能结构的团聚形式以及组合的颗粒内和颗粒孔隙空间通常延伸到几个长度尺度上。内部孔的范围从微(<2 nm)到介孔(2 - 50 nm)的状态,直至较大的大孔(> 50 nm),而颗粒间孔通常是较大的大孔。[14]单个颗粒的大小只有几nm到几十µm,它们的团聚和包装结构通常是宏观尺寸的。[5]难度是对所有必要的,函数确定的特征的完整评估,仅使用一种3D表征技术就无法执行。
©作者在欧洲放射学学会的独家许可下。2022 Open Access本文均在创意共享归因4.0国际许可下获得许可,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您适当地归功于原始作者(S)和来源,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
量子过程层析成像 (QPT) 方法旨在识别(即估计)给定的量子过程。QPT 是一种主要的量子信息处理工具,因为它特别允许人们表征量子门的实际行为,而量子门是量子计算机的基石。然而,通常的 QPT 程序很复杂,因为它们对用作要表征过程的输入的量子态设置了几个约束。在本文中,我们扩展了 QPT 以避免两个这样的约束。一方面,通常的 QPT 方法要求人们知道,因此要非常精确地控制(即准备)用作所考虑量子过程输入的特定量子态,这很麻烦。因此,我们提出了一种盲目或无监督的 QPT 扩展(即 BQPT),这意味着这种方法使用的输入量子态的值是未知的和任意的,只是要求它们满足一些一般的已知属性(并且这种方法利用了所考虑量子过程的输出状态)。另一方面,通常的 QPT 方法要求人们能够准备相同(已知)输入状态的多个副本,这具有限制性。与此相反,我们提出了“单准备 BQPT 方法”(SBQPT),即只能对每个考虑的输入状态的一个实例进行操作的方法。这里通过数值验证的实用(S)BQPT 方法说明了这两个概念,在以下情况下:(i)使用随机纯态作为输入,并且它们所需的属性特别与定义它们的随机变量的统计独立性有关;(ii)所考虑的量子过程基于圆柱对称海森堡自旋耦合。作为基准,我们还引入了专用于所考虑的海森堡过程的非盲 QPT 方法,我们分析了它们的理论行为(这需要本文针对随机输入状态开发的工具),并通过数值测试它们对系统性和非系统性误差的敏感性,这些误差在实践中最有可能出现。这表明,即使对于非常低的准备误差(尤其是系统误差),这些非盲 QPT 方法的性能也远低于我们的 SBQPT 方法。我们的盲目和单一准备 QPT 概念可以扩展到更广泛的过程类别和基于其他量子态属性的 SBQPT 方法,如本文所述。