。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2024年4月26日。; https://doi.org/10.1101/2024.04.26.591264 doi:biorxiv Preprint
在多细胞生物中,特定组织是由干细胞的特定种群通过不对称细胞分裂的循环产生的,其中一个女儿经历了分化,另一个女儿维持增生特性。在拟南芥根中,哥伦氏菌 - 一种保护和定义干细胞生态位位置的重力感应组织 - 代表了组织的典型例子,该组织的组织仅由增殖和分化之间的平衡决定。柱状细胞通过二元细胞命运开关衍生自单层干细胞,该开关由多个独立的调节输入精确控制。在这里,我们表明HD-ZIP II转录因子(TFS)HAT3,ATHB4和AHTB2冗余地调节了拟南芥根中的小肠干细胞命运和图案。HD-ZIP II TFS通过充当FEZ/ SMB电路的效应子,同时通过干扰生长素信号来抵消激素诱导的分化,从而促进Columella干细胞增殖。总体而言,我们的工作表明HD-ZIP II TFS连接两个相对的平行输入,以调整柱状干细胞中增殖与分化之间的平衡。
梭状芽胞杆菌艰难梭菌感染(CDI)每年在美国约30万住院,相关的货币成本为数十亿美元。肠道微生物组营养不良对CDI很重要。据我们所知,元文字组合(MT)仅用于表征肠道微生物组组成和功能,在一项涉及CDI患者的先前研究中。因此,我们利用MT研究了CDI+(n = 20)和CDI-(n = 19)样品在微生物类群和表达基因方面的活性群落多样性和组成的差异。根据CDI状态,未检测到有关丰富性或偶数的显着(Kruskal-Wallis,p> 0.05)的显着差异。但是,基于CDI状态的聚类对于活性微生物分类群和表达的基因数据集都很重要(Permanova,P≤0.05)。此外,与CDI-样品相比,CDI+中的差异特征分析表明,机会性病原体的肠球菌病原体和Ruminococcus gnavus的表达更大。仅考虑真菌序列时,糖霉菌科在CDI-中表达了更多的基因,而其他31种真菌分类群则被确定为显着(Kruskal-Wallisp≤0.05,log(LDA)≥2)与CDI+相关。我们还检测到基于CDI状态的各种基因和途径(Kruskal-Wallisp≤0.05,log(LDA)≥2)显着差异。值得注意的是,与生物膜形成相关的差异基因通过艰难梭菌表达。这为艰难梭菌对抗生素的抵抗和体内频繁复发提供了另一个可能的贡献。此外,更多的CDI+相关真菌分类群构成了额外的证据,表明该分枝杆菌对CDI发病机理很重要。未来的工作将集中于确定艰难梭菌在感染过程中是否积极产生生物膜,以及任何特定的真菌分类群在CDI中是否特别有影响力。
摘要。据估计,病毒病原体每年会给全球虾类行业造成10亿美元的损失。根据世界动物健康组织(OIE)的说法,该部门面临的主要健康问题是病毒病因疾病的发生。当前,基于RNAi的治疗方法显示了控制各种病毒的希望。甲壳类动物中内源性Rab7基因的沉默可防止复制影响虾的各种类型的病毒。该基因的阻塞抑制了DNA病毒的感染,例如WSSV,也抑制了用RNA(YHV,TSV,LSNV)的病毒。从这种角度来看,这项研究旨在通过体外转录综合DSRNA-RAB7。以这种方式,可以获得与penaeus japonicus(LJRAB7)的Rab7基因(GenBank AB379643.1)相对应的393 bp dsRNA。通过用RNase A分析来证实双链结构中的杂交。研究的含义是在其重要性中讨论的,作为开发与Penaeid Shrimps水产养殖部门相关的病毒病原体方法开发方法的工具。关键词:dsRNA,虾,rab7基因,RNAi,转基因表达,病毒。简介。如今,没有治疗方法可用于控制虾养殖行业的病毒病原体。然而,正在努力开发抗病毒疗法来对抗这些类型的虾病原体。此外,RNAi在抑制这些努力主要基于双链RNA(DSRNA)介导的基因的沉默,或通过涉及使用RNA干扰(RNAi)的机制(Saksmerprome等,2009; Itathitphaisarn等人,2017年)。据报道,RNAi可以保护虾免受几种高度致病的病毒,包括白斑综合征病毒(WSSV)(Attasart等,2009年),黄头病毒(YHV)(Tirasophon等,2005,2007,2007),Taura综合征病毒(TSV)(tsv) (PSTDV1)和Penaeus monodon致病毒(PMDNV)(Attasart等人,2011; Saksmerprome et al 2013; Chimwai等,2016)。基于RNAi的机制已被证明是一种有前途的预防和治疗方法,用于治疗影响虾的病毒疾病。RNAi的作用机理是由DSRNA分子引发的,DSRNA分子导致Messenger RNA(mRNA)从特定和同源序列降解(Fire等,1998)。在虾中,像YHV蛋白酶这样的病毒基因互补的dsRNA已被证明可以有效预防和/或固化该病毒在P. monodon中引起的感染(Yodmuang et al 2006; Tirasophon et al 2007)。
具有基本螺旋-环-螺旋(bHLH)结构的转录因子广泛调控植物的生长、表皮结构发育、代谢过程和对压力的反应。海薰衣草(Limonium bicolor)是一种泌盐植物,其表皮中独特的盐腺使其具有很强的抗盐胁迫能力,有助于盐碱地的改良。但海薰衣草中bHLH转录因子家族的特征尚不清楚。本文通过遗传分析系统地分析了整个海薰衣草基因组中187个已鉴定的bHLH家族基因的特征、定位和系统发育关系,以及它们的顺式调控启动子元件、表达模式和在盐腺发育或耐盐性中的关键作用。已验证的9个海薰衣草bHLH基因在细胞核中表达且编码的蛋白在细胞核中发挥作用,其中Lb2G14060和Lb1G07934编码的蛋白也定位于盐腺中。 CRISPR-Cas9 敲除突变体和过表达株分析表明,Lb1G07934 编码的蛋白参与盐腺形成、盐分泌和抗盐性,表明 bHLH 基因对盐胁迫响应和表皮结构发育具有重要影响。本研究为进一步研究 bHLH 基因在盐芥中的作用和作用机制奠定了基础,为筛选提高作物抗盐性的耐盐基因和改良盐渍土奠定了基础。
肿瘤细胞由于加速生长而伴随着肿瘤微环境中的代谢应激(Payne,2022)。缺氧和营养供应不足会引发代谢应激,使肿瘤细胞重新编程为适应性机制。肿瘤细胞可以启动细胞适应性,重新调整其代谢表型以应对这些代谢压力(Jin and White,2007)。针对这些细胞适应性可能为抗肿瘤策略提供潜在的方法。为了应对各种细胞和代谢压力,激活转录因子 4(ATF4)会升高并作为调节器促进细胞适应生存(Wortel et al.,2017)。在癌症中,ATF4 已被确定为应激诱导的转录因子,并发现在一系列肿瘤中频繁上调。值得注意的是,已检测到 ATF4 在一些缺氧和营养不良的肿瘤区域高表达(Ye and Koumenis,2009)。 ATF4作为转录调控因子,广泛参与肿瘤中氨基酸代谢、自噬、氧化还原稳态和内质网应激的调控(图1、2)。本文全面总结了ATF4在肿瘤中的多种作用,并探讨了以ATF4为靶点的抗肿瘤策略的临床意义(表1)。
冠状病毒含有RNA病毒中最大的基因组之一,编码与蛋白水解加工,基因组复制和转录有关的14-16个非结构性蛋白质(NSP),以及四种构建成熟Virion的核心的结构蛋白。由于跨冠状病毒的保护,NSP形成了一组有前途的药物靶标,因为它们的抑制作用直接影响病毒复制,因此会影响感染的进展。显示出一种由一种RNA依赖性RNA聚合酶(NSP12),一个NSP7,两个NSP8辅助亚基和两个解旋酶(NSP13)酶形成的最小但功能齐全的复制和转录复合物。我们的方法涉及NSP12和NSP13,以使多个起点干扰病毒感染的进展。在这里,我们报告了一种合并的体外重新利用筛选方法,确定了新的和确认报告的SARS-COV-2 NSP12和NSP13抑制剂。
1 1,美国马萨诸塞州波士顿的达纳 - 法伯癌研究所(CCSB),美国马萨诸塞州波士顿2遗传学系,Blavatnik研究所,哈佛医学院,波士顿,马萨诸塞州,美国马萨诸塞州3号,美国3号癌症生物学系,达纳 - 法伯癌症研究所生物学,波士顿大学,美国马萨诸塞州波士顿,美国6生物信息学计划,波士顿大学,美国马萨诸塞州波士顿,美国7年7次表格遗传学和分子致癌系辛辛那提医学院,美国俄亥俄州俄亥俄州,美国10号生物医学信息学部,辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提市,美国11号Terra教学与研究中心,Liège,Gembloux,比利时12号列gemboux,lioun of combr of Viral Intervactium of combr of combr of combloux Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK 15 The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada 16 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada 17 Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario,加拿大18分子和蜂窝生物学系,美国德克萨斯州休斯敦贝勒医学院1 1,美国马萨诸塞州波士顿的达纳 - 法伯癌研究所(CCSB),美国马萨诸塞州波士顿2遗传学系,Blavatnik研究所,哈佛医学院,波士顿,马萨诸塞州,美国马萨诸塞州3号,美国3号癌症生物学系,达纳 - 法伯癌症研究所生物学,波士顿大学,美国马萨诸塞州波士顿,美国6生物信息学计划,波士顿大学,美国马萨诸塞州波士顿,美国7年7次表格遗传学和分子致癌系辛辛那提医学院,美国俄亥俄州俄亥俄州,美国10号生物医学信息学部,辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提市,美国11号Terra教学与研究中心,Liège,Gembloux,比利时12号列gemboux,lioun of combr of Viral Intervactium of combr of combr of combloux Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK 15 The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada 16 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada 17 Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario,加拿大18分子和蜂窝生物学系,美国德克萨斯州休斯敦贝勒医学院1,美国马萨诸塞州波士顿的达纳 - 法伯癌研究所(CCSB),美国马萨诸塞州波士顿2遗传学系,Blavatnik研究所,哈佛医学院,波士顿,马萨诸塞州,美国马萨诸塞州3号,美国3号癌症生物学系,达纳 - 法伯癌症研究所生物学,波士顿大学,美国马萨诸塞州波士顿,美国6生物信息学计划,波士顿大学,美国马萨诸塞州波士顿,美国7年7次表格遗传学和分子致癌系辛辛那提医学院,美国俄亥俄州俄亥俄州,美国10号生物医学信息学部,辛辛那提儿童医院医疗中心,俄亥俄州辛辛那提市,美国11号Terra教学与研究中心,Liège,Gembloux,比利时12号列gemboux,lioun of combr of Viral Intervactium of combr of combr of combloux Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK 15 The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada 16 Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada 17 Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, Ontario,加拿大18分子和蜂窝生物学系,美国德克萨斯州休斯敦贝勒医学院
每种 RNA 的水平取决于其产生率和衰变率之间的平衡。尽管先前的研究已经测量了组织培养和单细胞生物中整个基因组的 RNA 衰变,但很少有实验是在完整的复杂组织和器官中进行的。因此,尚不清楚在培养细胞中发现的 RNA 衰变决定因素是否在完整组织中保留,以及它们在邻近细胞类型之间是否不同以及在发育过程中是否受到调节。为了解决这些问题,我们通过使用 4-硫尿苷对整个培养的果蝇幼虫大脑进行代谢标记,测量了全基因组的 RNA 合成和衰变率。我们的分析表明,衰变率范围超过 100 倍,并且 RNA 稳定性与基因功能有关,编码转录因子的 mRNA 比参与核心代谢功能的 mRNA 稳定性低得多。令人惊讶的是,在转录因子 mRNA 中,更广泛使用的转录因子与在发育过程中仅短暂表达的转录因子之间存在明显的界限。编码瞬时转录因子的 mRNA 是大脑中最不稳定的。这些 mRNA 的特点是大多数细胞类型中的表观遗传沉默,如其富含组蛋白修饰 H3K27me3 所示。我们的数据表明存在针对这些瞬时表达的转录因子的 mRNA 不稳定机制,从而可以快速高精度地调节它们的水平。我们的研究还展示了一种测量完整器官或组织中 mRNA 转录和衰减率的通用方法,为了解 mRNA 稳定性在调节复杂发育程序中的作用提供了见解。
脑周细胞是调节内皮屏障功能和活性的关键细胞类型之一,从而确保足够的血液流向大脑。尚不清楚将未分化的细胞引导到成熟的周细胞中的遗传途径。我们在这里表明,斑马鱼的神经rest和中胚层的周细胞前体种群表示转录因子NKX3.1发展成脑周细胞。我们确定了这些前体的基因特征,并表明NKX3.1,FOXF2A和CXCL12B表达周围的周围前体群体存在于动脉形成和周细胞募集之前的基底动脉周围。前体随后散布在整个大脑中,并分化以表达规范的周细胞标记。cxcl12b- cxcr4信号传导是细节附着和分化所必需的。此外,随着损失的损失和增益增加,NKX3.1和CXCL12 B在调节周细胞数方面都是必需的,并且足够。通过遗传实验,我们为脑周细胞定义了前体群体,并确定了对其分化至关重要的基因。