进行了本研究,以评估昆虫致病性线虫,Steinernema Carpocapsae Weiser和三种昆虫病变真菌(Metarhizium arisopliae(Metschn。)(Metschn。)Sorokin,Trichoderma Harzianum Rifai和T. Viride Pers。)针对Spodoptera Frugiperda的第二和第四幼虫龄(J. E. Smith)。结果表明,CarpoCapeAe在接种后4天(DPI)使用叶片浸入法(DPI)的LC 50值分别为52.03和4.11感染力少年(IJS)ML -1,在接种后4天,在接种后使用叶片浸出方法,使脆性链球菌的第二和第四个幼虫龄出现了明显的死亡率。另一方面,三种测试的昆虫病作用真菌对弗鲁吉帕尔达链球菌的幼虫龄产生了较强的毒性。真菌T。arzianum在第二个幼虫龄(LC 50 = 1.1×10 7孢子ML -1)和M. Anisopliae上显示出最高的杀虫活性,在10 dpi后,在第四个幼虫龄(LC 50 = 1.5×10 7个孢子ML -1)上表现出最高的杀虫活性。我们的结果表明,在250 IJS ML -1的幼虫中完全抑制了帕克环链球菌和成年幼虫的成年出现。昆虫致病性线虫和真菌对S. frugiperda幼虫龄的致命作用表明,这些生物控制剂在这种侵入性昆虫的综合害虫管理程序中可能是有用的候选者。
全球有机废物是由水果,蔬菜及其果皮产生的。它主要是在垃圾填埋场或堆肥方法中分解的。食品加工行业,蔬菜市场和餐馆每天生产大量有机废物,通常在环境或堆肥中处置。从有机厨房废物中生产出生态酶是用于家庭废物污染的创新解决方案。这是一种从含有有机酸,酶和矿物质盐的有机废物物质获得的酶溶液。它是通过进行简单的批处理发酵而产生的,该发酵涉及红糖,水果或蔬菜废物的混合物以及1:3:10的水。通过使用蔬菜和果皮发酵工艺产生两种类型的生态酶,约90天涉及酿酒酵母。获得的最终液体或酶为棕色。来自(Cucurbita Maxima)的生态酶1含有水解酶,例如淀粉酶和脂肪酶。观察到微生物的多样性,像耶尔森氏菌,芽孢杆菌和真菌一样的细菌(如trichoderma sp。和penicillium sp。在生态酶2(Citron)中观察到没有酶和微生物。Eco-enzyme 1具有50%稀释的生态酶1可有效降低各种参数,例如dra剂,COD,TDS,硝酸盐,硝酸盐,硝酸盐和铵。此外,与对照相比,它在10天内促进了植物的生长。因此,本研究概述了如何使用生态酶来治疗成本效益和环境友好的工业废水。
最新发现表明,真菌可以占据环境RNA,然后可以通过环境RNA干扰沉默真菌基因。这一发现促使开发用于植物疾病管理的喷雾诱导的基因沉默(SIGS)。在这项研究中,我们旨在确定在各种真核微生物中SIG的效率。我们首先检查了多种致病性和非致病真菌和卵形病原体中RNA摄取的效率。我们观察到了真菌植物病原体中有效的双链RNA(dsRNA)摄取,果仁酸酯,硬化菌核,根瘤菌索拉尼,索拉尼菌,尼日尔和佛罗里达州的黄瓜和佛罗里西亚果皮,但在浓度较弱真菌,Trichoderma Virens。对于卵植物病原体,植物疫霉菌,RNA吸收有限,并且在不同的细胞类型和发育阶段有所不同。靶向毒力相关基因的DSRNA局部应用在具有高RNA摄取效率的高效率的病原体中显着抑制了植物性疾病症状,而DSRNA在低RNA效率效率低的病原体中的应用不会抑制感染。我们的结果表明,在真核微生物物种和细胞类型之间,DSRNA摄取效率各不相同。SIG在植物性疾病管理方面的成功可以在很大程度上取决于病原体的RNA摄取效率。
摘要:在单喷丝头静电纺丝均匀混合溶液的过程中,通过 PEO 和 BW 的自组织,制备了由聚环氧乙烷 (PEO)、蜂蜡 (BW) 和 5-硝基-8-羟基喹啉 (NQ) 制成的芯鞘纤维组成的纤维材料。此外,采用同样的方法,还可以制备由 PEO、聚(L-丙交酯) (PLA) 和 NQ 或 5-氯-7-碘-8-羟基喹啉 (CQ) 以及 PEO、聚(ε-己内酯) (PCL) 和 NQ 制成的芯双鞘纤维组成的纤维材料。分别用己烷和四氢呋喃对 BW 和聚酯进行连续选择性萃取,结果表明 PEO/聚酯/BW/药物的芯双鞘纤维由 PEO 芯、聚酯内鞘和 BW 外鞘组成。为了评估 PEO/BW/NQ、PEO/PLA/BW/NQ、PEO/PCL/BW/NQ 和 PEO/PLA/BW/CQ 纤维材料用于植物保护的可能性,使用植物病原微生物(皱褶假单胞菌、禾谷镰刀菌和燕麦镰刀菌)和有益微生物(绿针假单胞菌、解淀粉芽孢杆菌和棘孢木霉)进行了微生物学研究。发现纤维材料对植物病原微生物和有益微生物均具有抗菌和抗真菌活性。这是首次报道装载 8-羟基喹啉衍生物的纤维材料不仅对植物病原微生物具有活性,而且对农业中重要的有益微生物也具有活性。
摘要:影响Holm Oak的根腐是伊比利亚半岛高生态和经济损失的原因,强调了发展疾病控制方法的相关性。这项工作的目的是评估由有益的生物(Trichoderma Complex,T-Complex)组成的生物处理的作用,对在两个对比的Holm Oak Ecotyp中感染的Holm Oak幼苗感染了phytophthora cinnamomi,一种被认为是高度易于耐受的霍尔姆oak oak Ecotyp,一种被认为是耐受性的(hu)和另一种被认为是耐受性的。为此,在温室中进行了完整的多因素测试,并监测幼苗以进行生存分析以及形态和生理属性评估。死亡率始于易感性(HU),而不是在耐受性(GR)生态型中,并且由于植物的生态型,生存率显示出不同的趋势。耐受性生态型显示出高生存率和对利用微生物治疗的更好反应。glm表明,治疗之间差异的主要原因是生态型,其次是T-复合和灌溉,并且发现生态型和肉桂疟原虫之间存在弱相互作用。光合作用(a)与蒸腾(TR)之间的线性关系显示,在DR型条件下,在DR型条件下,感染和接种植物的A/TR速率增加。受益的微生物治疗对耐受性生态型的影响更大。对Q的遗传多样性的理解和水应力对生物处理对根腐病的有效性的影响提供了有用的信息,以开发环保疾病控制方法来解决Holm Oak的下降。
摘要 - 在土壤微生物组的组成中,有许多能够促进植物生长的微生物,它们被称为植物生长促进微生物。这项研究的目的是确定多功能微生物单独或组合使用对玉米植株的地上部、根部和总生物量生产、气体交换、常量营养素含量、产量成分和谷物产量的影响。该实验在温室中以完全随机设计进行,重复四次。26 个处理包括用根际细菌芽孢杆菌属(BRM 32109、BRM 32110 和 BRM 63573)、伯克霍尔德菌(BRM 32111)、假单胞菌属(BRM 32112)、粘质沙雷氏菌 BRM 32113、沙雷氏菌属对玉米种子进行单独或组合微生物化。 (BRM 32114)、巴西固氮螺菌(Ab-V5)和固氮螺菌属(BRM 63574)、从真菌 Trichoderma koningiopsis(BRM 53736)中分离的菌株以及对照处理(未施用微生物)。在第 7 天和第 21 天,分别在土壤和植物中再施用两次相同的处理。单独或组合施用的微生物可显著提高玉米植物生物量 49%、气体交换 30%、常量营养素含量 36% 和谷物产量 33%。分离物 BRM 32114、Ab-V5、BRM 32110 和 BRM 32112 以及组合 BRM 32114 + BRM 53736、BRM 63573 + Ab-V5 和 BRM 32114 + BRM 32110 为玉米带来了更好的效益,这使我们推断出使用有益微生物会显著影响玉米植株的发育。关键词:根瘤菌。真菌。共接种。产量。玉米。
Brassica Juncea(印度芥末)是一种至关重要的油料作物,非常容易受到菌核病菌根菌腐烂的影响,这是一种严重影响农作物产量和质量的病原体。这项研究评估了种子启动与生物控制剂的作用,包括枯草芽孢杆菌,Trichoderma viride及其组合对两种在田间条件下的繁殖芽孢杆菌(Rh30和Varuna)的两种。病原体接种,并在接种后10和20天(DAI)评估形态学,生化和与产量相关的参数。结果表明,枯草芽孢杆菌和T. viride的联合应用显着改善了植物高度,根和芽生物量以及茎直径。生化分析显示,二级代谢产物(如类黄酮,酚类和抗坏血酸)以及抗氧化酶的活性增加,包括过氧化氢酶(CAT),多酚氧化酶(PPO)(PPO)和过氧化物酶(POX)。这些变化与减少疾病症状相关,例如较短的茎病变长度,较少的菌根和茎损伤百分比降低。此外,在用生物控制剂处理的植物中,可以显着改善诸如每植物的小硅藻的数量,种子大小和千分光的属性属性。联合治疗的表现优于枯草芽孢杆菌或T. viride的个体应用,证明了其在降低疾病严重程度和提高产量方面的效果。这些发现提供了用于管理油料种子作物生物胁迫的化学方法的可持续替代方法。这项研究强调了将生物控制剂整合到农作物管理实践中的潜力,以提高对硬核腐烂的耐药性,并提高Juncea的生产力。
这项研究由伊拉克农业部植物保护局开展,旨在了解在小麦品种 IPA-99 中添加植物生长促进微生物 (PGPM)(巴西安氏螺旋菌、梭形赖氨酸芽孢杆菌、鹰嘴豆根瘤菌 CP-93、荧光假单胞菌、巨大芽孢杆菌和哈茨木霉)作为生物肥料与 25% 矿物肥料的效果。实验室研究包括分离和鉴定赖氨酸芽孢杆菌,该菌在体外与这些微生物之间没有拮抗作用。研究结果表明,T2处理在大多数性状中均表现优异,包括分蘖数(4.00 分蘖株 -1 )、穗长(10.50 cm)、每穗小穗数(19.50 小穗穗 -1 )、百粒重(3.50 g)和每穗粒数(35.43 粒穗 -1 )。该处理在籽粒氮含量(4.870%)、磷含量(1.943%)、钾含量(4.156%)和蛋白质含量(30.43%)等方面也表现出色。除生物产量特性(处理T5(62.30 g株 -1 )优于处理T1(23.10%))和收获指数(处理T2)外,T2优于所有处理。但是,它们与处理T2之间并无显著差异。关键词:小麦、梭形芽孢杆菌、生物肥料、PGPM、生长和产量性状 主要发现:梭形芽孢杆菌作为生物肥料处理,结合 25% 的推荐矿物肥料剂量,显著提高了小麦的生长和产量参数。此外,生物肥料还增加了小麦植株中 NPK 的利用率。
多功能微生物可以显着影响山地幼苗的根和射击发展,这可能会增加作批作物的产量。这项研究的目的是确定单一和合并的微生物对根部水稻幼苗的射击发展的影响。该实验是在完全随机的设计中布置的,其处理和由单一和组合的多功能微生物(M01(M01(Serratia Marcescens))处理的高地稻种子组成),M06(偶氮螺旋体),M07(芽孢杆菌),M08至M28(这些微生物的组合)和M29(对照 - 无微生物)s。带有巨大芽孢杆菌的marcescens导致根长度相对于对照,根长度最大(296%)。B. Toyonensis具有a。巴西林的Toyonensis将根表面积大大增加了209%。记录了用杆菌属芽孢杆菌接种的高地大米的根直径增加了36%。与控件有关。P. Australis和杆菌属。 与对照相比,大大增加了根体积(47%)。 可以得出结论,多功能微生物增强了根长度,根表面积,根直径和体积,并提供了更好的根发育。 关键词:微生物化,根长,发芽,有益细菌,有益真菌。P. Australis和杆菌属。大大增加了根体积(47%)。可以得出结论,多功能微生物增强了根长度,根表面积,根直径和体积,并提供了更好的根发育。关键词:微生物化,根长,发芽,有益细菌,有益真菌。引言多功能微生物的应用通过直接和间接的机制改善了植物的开发,并表明可以使农作物管理实践更加环境可持续(Cruz等,2023; Silva等,2023)。这些机制是产生特定代谢产物的结果,例如生长刺激剂(植物激素),水解酶,铁载体,抗生素和碳
控制这种疾病的方法是使用农用化学品。在巴拉那州,所用产品的有效成分包括甲氧基丙烯酸酯、二硫代氨基甲酸酯、三唑和有机锡。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估在连续使用杀菌剂、添加生物制剂和播种季节时分子的轮换对豆类炭疽病的防治效果。在第一阶段,晚播季节的 AACPI 和 AACPS 较高。处理 3(管理方案)显示豆荚发生率降低,比处理 2(化学处理)效果高出 20.46%。处理2和处理3的生产力均超过了对照,分别增加了15.82%和12.66%。第二阶段,有效成分为戊唑醇+肟菌酯和丙硫菌唑+肟菌酯的农药在添加木霉菌后,防治豆类炭疽病的效果得到增强。和枯草芽孢杆菌。关键词:炭疽菌,综合管理,杀菌剂,生物防治。摘要 炭疽病(Colletotrichum lindemuthianum)是影响普通豆类的主要疾病,可导致高达 100% 的产量损失,对粮食安全构成威胁,因为豆类是发展中国家低收入人群的主要蛋白质来源。控制这种疾病的主要方法是使用农用化学品。在巴拉那州,常用的活性成分包括甲氧基丙烯酸酯类、二硫代氨基甲酸酯类、三唑类和有机锡化合物。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估连续使用杀菌剂的分子轮换,结合生物制剂和种植时间对豆类炭疽病的治疗效果。在第一阶段,晚种植导致叶和茎炭疽病的AUDPC(病害进展曲线下面积)值更高。处理 3(综合管理方案)降低了豆荚发生率,比处理 2(化学处理)的效果高出 20.46%。处理2和处理3的产量优于对照,分别增产15.82%和12.66%。在第二阶段,含有有效成分戊唑醇+肟菌酯和丙硫菌唑+肟菌酯的农用化学品与木霉菌结合使用时对豆类炭疽病的防治效果增强。和枯草芽孢杆菌。关键词:炭疽菌,综合管理,杀菌剂,生物防治。摘要 炭疽病 (Colletotrichum lindemuthianum) 是影响豆类的主要疾病,可造成高达 100% 的产量损失,对粮食安全构成威胁,因为豆类是发展中国家低收入人群的基本蛋白质来源。控制这种疾病的主要方法是使用农用化学品。在巴拉那州,所使用的产品含有甲氧基丙烯酸酯、二硫代氨基甲酸酯、三唑和有机锡化合物作为活性成分。将这些杀菌剂与生物防治剂结合起来的研究很少。因此,本研究的目的是评估在连续使用杀菌剂、结合生物制剂和播种时间的情况下分子轮换对豆类炭疽病的防治效果。在第一阶段,晚种植导致叶片和茎秆炭疽病的AUDPC(病害进展曲线下面积)值更高。处理 3(综合管理方案)降低了豆荚中的发病率,比