a 德国埃森大学医院皮肤科、西德癌症中心、杜伊斯堡-埃森大学和德国癌症联盟 (DKTK) 皮肤科 b 瑞士苏黎世苏黎世大学医院皮肤科 c 澳大利亚新南威尔士州悉尼大学澳大利亚黑色素瘤研究所 d 德国海德堡大学医院皮肤科和国家肿瘤疾病中心 (NCT) e 德国埃尔朗根大学医院和埃尔朗根-纽伦堡欧洲大都会区综合癌症中心 (CCC ER-EMN) 皮肤科 f 德国图宾根大学医院皮肤科 g 美国田纳西州纳什维尔范德堡大学医学中心医学部、血液学和肿瘤学分部和范德堡-英格拉姆癌症中心 h德国埃森 i 澳大利亚新南威尔士州悉尼皇家北岸医院和 Mater 医院肿瘤内科 j 德国埃森校区国家肿瘤疾病中心 (NCT)-西部、鲁尔研究联盟、杜伊斯堡-埃森大学健康研究中心
三阴性乳腺癌 (TNBC) 预后不良,主要是因为它们对化疗有耐药性。已知这种耐药性与 BCL-2 家族蛋白(即 BCL-xL、MCL-1 和 BCL-2)中某些抗凋亡成员的表达升高有关。这些蛋白通过结合和隔离抑制促凋亡蛋白活化来调节细胞死亡,并且可以被 BH3 模拟物选择性拮抗。然而,BCL-xL、MCL-1 和 BCL-2 对 TNBC 细胞对化疗敏感性的个体影响,以及它们受癌症相关成纤维细胞 (CAFs) 的调节,癌症相关成纤维细胞是肿瘤基质的主要成分,也是治疗耐药性的关键因素,这仍有待阐明。使用基因编辑或 BH3 模拟物抑制 TNBC 细胞系 MDA-MB-231 中的抗凋亡 BCL-2 家族蛋白,我们发现 BCL-xL 和 MCL-1 通过补偿机制促进癌细胞存活。该细胞系对化疗的敏感性有限,与 TNBC 患者观察到的临床耐药性一致。我们阐明了 BCL-xL 在治疗反应中起着关键作用,因为它的消耗或药理抑制提高了化疗效果。此外,BCL-xL 表达与患者来源的肿瘤中的化疗耐药性有关,其中其药理抑制增强了体外对化疗的反应。在癌细胞和 CAF 的共培养模型中,我们观察到即使在 BCL-xL 表达降低使癌细胞更易受化疗影响的情况下,与 CAF 接触的癌细胞也会对化疗表现出降低的敏感性。因此,CAF 在乳腺癌细胞中发挥着显著的促存活作用,即使在通过联合化疗和缺乏主要化学抗性因素 BCL-xL 而极易导致细胞死亡的环境中也是如此。
三阴性乳腺癌 (TNBC) 仍然是复发率和死亡率最高的乳腺癌亚型。TNBC 的治疗可能具有挑战性,因为该疾病具有不同的分子亚型。有各种治疗方案可供选择,例如化疗、免疫疗法、放射疗法和手术。化疗是这些方案中最常见的。化疗的严重副作用严重限制了其使用。长期毒性会影响大多数乳腺癌幸存者,显著降低他们的生活质量。免疫疗法会引起多种毒性作用,称为免疫相关不良事件 (IRAE)。这就需要寻找治疗三阴性乳腺癌的替代方法。该领域越来越多的研究集中在基于从天然来源获得的化合物的单一或联合疗法上。姜黄素、白藜芦醇和表没食子儿茶素-3-没食子酸酯等天然产物,具有其作用机制和抗肿瘤特性,是众多研究的主题。
三阴性乳腺癌 (TNBC) 不太可能对激素疗法和抗 HER2 靶向疗法产生反应。TNBC 过度表达 EGFR 并表现出 PI3K/AKT/mTOR 信号通路的组成性激活。我们假设同时阻断 EGFR 和 mTOR 可能是治疗 TNBC 的潜在治疗策略。我们研究了 mTOR 抑制剂依维莫司与 EGFR 酪氨酸激酶抑制剂吉非替尼联合在有或没有 PI3K/AKT/mTOR 信号通路激活突变的 TNBC 细胞中的抗肿瘤活性。我们证明依维莫司和吉非替尼在 PI3K 和 PTEN 突变的 CAL-51 细胞系中诱导协同生长抑制,但在 PTEN 缺陷的 HCC-1937 细胞系中没有诱导协同生长抑制。抗增殖作用与 mTOR 和 P70S6K 磷酸化的协同抑制以及 CAL-51 细胞系中 4E-BP1 活性的显著降低有关。我们还表明,联合疗法显著抑制了该细胞系的细胞周期进程并增加了细胞凋亡。基因和蛋白质表达分析表明,联合治疗后细胞周期调节因子显著下调。总之,这些结果表明,mTOR 和 EGFR 的双重抑制可能是治疗 PI3K 激活突变的 TNBC 的有效方法。
摘要:三光子产生 (TPG) 是一种三阶非线性光学相互作用,其中能量为 ћω p 的光子分裂为三个光子,分别为 ћω 1 、 ћω 2 和 ћω 3,其中 ћω p = ћω 1 + ћω 2 + ћω 3。三重态具有与光子对不同的量子特征,这对量子信息具有浓厚的兴趣。在本研究中,我们首次实验演示了在 ћω 1 处对三重态的一种模式进行刺激的 TPG,之前对 TPG 的研究涉及在 ћω 2 和 ћω 3 处对两种模式进行刺激。非线性介质是在 λ p = 532 nm 下以皮秒模式(15 ps,10 Hz)泵浦的 KTiOPO 4 晶体。刺激光束由可调光学参量发生器发射:在刺激波长 λ 1 = 1491 nm 处发现相位匹配,三重态的另外两个模式在正交极化下为 λ 2 = λ 3 = 1654 nm。使用超导纳米线单光子探测器,对两个生成模式的极化和波长特征的测量与计算完全一致。在模式 2 和 3 上每个脉冲可以产生总计 2 × 10 4 的光子数,这相当于每个脉冲产生 10 4 个三重态,或者每秒产生 10 5 个三重态,因为重复率等于 10 Hz。我们在未耗尽泵浦和刺激近似下,在海森堡表示中的非线性动量算符的基础上开发的模型框架中解释了这些结果。
6儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学186儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学18
6儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学186儿童和青少年精神病学和心理治疗系,中央研究所17心理健康研究所,医学院曼海姆,海德堡大学,德国曼尼海姆市海德堡大学18
摘要:有机半导体中的三重态激发态通常是光学的黑暗和长寿的,因为它们具有自旋孔向单线基态的旋转过渡,因此在轻度收获的应用中阻碍了过程。此外,三胞胎通常会对系统造成损害,因为它们可以使反应性单线氧的形成敏感。尽管有这些不利的特征,但存在我们可以利用三胞胎状态的机制,这构成了本综述的范围。开始对三胞胎状态问题的简短探索,我们继续阐明有机材料中三重态利用的主要机制:1。磷光(pH),2。热活化的延迟荧光(TADF)和3。三重态 - 三胞胎歼灭(TTA)。在每个部分中,我们都会揭示其工作原则,强调其广泛的应用程序,并讨论其局限性和观点。我们特别注意在有机发光二极管(OLEDS)中使用这些机制,因为OLEDS是有机半导体的最繁荣的商业应用。本综述旨在为读者提供见解和机会,以与有机半导体的光物理特性和设备物理学进行研究,尤其是在利用三胞胎状态的潜力方面。关键字:磷光,TADF,TTA,三胞胎状态,交叉Intersystem cropsing■简介
虽然最近的空间生物学创新推动了对组织组织如何改变疾病的新见解,但以通用且可扩展的方式解释这些数据集仍然是一个挑战。用于发现组织组织中条件特定差异的计算工作流程通常依赖于成对比较或无监督的聚类。在许多情况下,这些方法在计算上是昂贵的,缺乏统计严格,并且对低流行的细胞壁细分市场不敏感,这些细胞壁细分市场仍然高度歧视和预测患者的结果。在这里,我们提出了乳蛋饼 - 一种自动化,可扩展性和统计上健壮的方法,可用于发现在空间区域,纵向样本或临床患者群体中差异富集的细胞壁细分市场。与现有方法相反,乳蛋白蛋白蛋白蛋白蛋白原将局部利基检测与可解释的统计建模相结合,使用图形邻域来检测差异富集的细胞壁细分市场,即使在较低的患病率下也是如此。在人类组织的硅模型和空间蛋白质组学成像中,我们证明了乳蛋饼可以准确地检测出少于20%的患者样品的频率为0.5%的条件特异性细胞壁细分市场,从而超过了下一个最佳方法,该方法需要患者患者的患病率为60%才能进行检测。为了验证我们的方法并了解肿瘤结构如何影响三重阴性乳腺癌(TNBC)的复发风险,我们使用蛋饼全面介绍了多中心的空间蛋白质组学群体中的肿瘤微环境,这些蛋白质组学同类群体由原发性手术切除术组成,由314例患者分析了200万个细胞,分析了500万个患者。我们发现了始终富集在肿瘤微环境的关键区域的细胞壁细分市场,包括肿瘤免疫边界和细胞外基质重塑区域,以及与患者的统计相关的壁细分市场,包括复发状态和复发性无效生存。大多数差异壁ni(74.2%)是针对未复发并形成富含肿瘤和肿瘤细胞单核细胞,巨噬细胞,APC和CD8T细胞的强大互连网络的患者。相比之下,复发的患者的相互作用网络明显稀疏,并且在B细胞,CD68巨噬细胞和中性粒细胞中富集。我们使用两个独立人群验证了这些发现,观察了相似的细胞相互作用和预测能力。总的来说,这些结果表明,生产性抗肿瘤免疫反应的显着,普遍的特征是由与肿瘤和基质细胞的先天和适应性免疫之间的结构参与网络所定义的,而不是由任何特定的细胞群体。,我们已在https://github.com/jranek/quiche中免费提供作为用户友好的开源Python软件包。
原发性肝癌新发病例数为 90.6 万,在恶性肿瘤增长中位居第六位。此外,肝癌死亡人数为 83 万,在死亡率方面位居第三位(Sung et al.,2021)。肝细胞癌 (HCC) 是原发性肝癌的最重要形式,约占肝癌病例的 90%(Anwanwan et al.,2020)。多种风险因素可导致原发性肝癌的发展,包括乙型肝炎病毒 (HBV) 感染、丙型肝炎病毒 (HCV) 感染、纤维化慢性肝损伤、黄曲霉毒素 B1 和过量饮酒(Akinyemiju et al.,2017;欧洲肝脏研究协会和欧洲癌症研究与治疗组织,2012 年)。 HCC从具有微小基因突变的异常增生病变持续发展到HCC晚期,表现出涉及多种分子的显著分子异质性(Marquardt et al., 2015)。HCC发展多个阶段的广泛肿瘤异质性阻碍了患者的分层和有效治疗(Giannelli et al., 2016)。因此,探索HCC的肿瘤异质性将有助于对患者进行分层和有效治疗。HCC的肿瘤转化通常起源于肝细胞和祖细胞,两者都是上皮细胞类型。这些上皮细胞的可塑性变化通常被称为上皮-间质转化(EMT),增加了细胞异质性的复杂性(Giannelli et al., 2016)。癌细胞中的EMT程序可以在侵袭和转移过程中以不同程度暂时或稳定地激活。粘附分子高表达可增强细胞的迁移能力和侵袭性。大量证据表明,EMT在癌症侵袭和转移中起着重要作用(Nieto et al.,2016;Thiery et al.,2009;Thiery,2002;Hanahan and Weinberg,2011)。通过分析恶性上皮性肝细胞的各种EMT表型,研究人员可以评估HCC的复杂性和细胞异质性。很少有研究在大量的活检样本中研究几种EMT标志物,因此很难仅根据单一标志物来判断EMT的发生(Yang et al.,2009)。E-cadherin与occludin或细胞角蛋白一起代表了最常用的上皮特征标志物,而N-cadherin和vimentin是最常见的EMT标志物。