参考文献:Van de Sompel Phaedra、Khalilov Umedjon、Neyts Erik。- 对比等离子体辅助碳纳米管成核中的 H 蚀刻和 OH 蚀刻 物理化学杂志:C:纳米材料和界面 - ISSN 1932-7447 - 125:14(2021),第 7849-7855 页 全文(出版商 DOI):https://doi.org/10.1021/ACS.JPCC.0C11166 引用此参考:https://hdl.handle.net/10067/1783930151162165141
用于太空有效载荷的微波专为各种微波频率而设计。它们还能够承受严苛的太空和发射环境。它们为航天器系统中的组件提供电气接口,确保高可靠性。该封装由许多载板组成,基板附着在其上。载板用作金属载体,以支撑蚀刻微波电路的氧化铝基板。基于 CFRP 的载板的自主开发可能取代标准的基于 Kovar 的载板,以将质量减少六倍并使其比现有拓扑更轻。然而,与 Kovar 材料相比,CFRP 的导电性明显较低。较低的导电性直接影响散热、电磁屏蔽、载流能力和表面处理工艺。为了克服这些问题并获得充分的优势,可以将先进的纳米填料碳纳米管 (CNT) 添加到聚合物中。使用 CNT 复合材料不仅可以减轻重量,还可以改善热参数和电参数。本文概述了增强 CFRP 的热性能和电性能的研究,并有助于设计微波封装组件。挑战在于确定合适的制造技术、工艺参数和 CNT 复合材料的特性。
1 圣何塞州立大学信息系统与技术学院,美国加利福尼亚州圣何塞 95192 2 韩国科学技术院管理信息系统系,韩国大田 34141 3 伊尔迪兹技术大学电子与通信工程系,土耳其伊斯坦布尔 34349 4 明尼苏达大学医学院血液学、肿瘤学和移植医学系,美国明尼苏达州明尼阿波利斯 55455 5 斯坦福大学医学院神经病学和神经科学系,美国加利福尼亚州斯坦福 94305 6 斯坦福大学医学院精准健康和综合诊断中心,美国加利福尼亚州斯坦福 94305 7 明尼苏达大学信息学研究所,美国明尼苏达州明尼阿波利斯 55455 8 共济会癌症中心,美国明尼苏达州明尼阿波利斯 55455 9 MD 安德森癌症中心神经肿瘤学系德克萨斯大学系统中心,美国德克萨斯州休斯顿 77030 10 神经科学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 11 癌症生物学研究生项目,MD 安德森 UTHealth 生物医学科学研究生院,美国德克萨斯州休斯顿 77030 * 通信地址:emil-lou@umn.edu (EL);cbpatel@mdanderson.org (CBP);电话:+1-612-625-9604 (EL);+1-713-792-0778 (CBP);传真:612-625-6919 (EL);713-745-0387 (CBP) † 这些作者对本文的贡献相同。 ‡ 这些作者对本文的贡献相同。
基于核酸调节细胞活性的治疗方法最近引起了人们的注意。这些分子来自复杂的生物技术过程,需要有效的制造策略,高纯度和精确的质量控制才能用作生物制药。基于核酸的生物治疗剂制造的最关键和最耗时的步骤之一是它们的纯化,这主要是由于提取物的复杂性。在这项研究中,描述了一种简单,有效且可靠的方法,用于分离和阐明复杂样品的质粒DNA(pDNA)。该方法基于使用原始碳纳米管(CNT)的选择性捕获RNA和其他杂质的选择性捕获。研究了带有不同直径的多壁CNT(MWCNT),以确定其吸附能力,并解决其相互作用和区分核酸之间的能力。结果表明,MWCNT优先与RNA相互作用,并且较小的MWCNT具有较高的吸附能力,如较高的特定表面积所预期的那样。总体而言,这项研究表明,与初始水平相比,MWCNT显着降低了杂质(即RNA,GDNA和蛋白质)的水平约为83.6%,从而使溶液中澄清的pDNA在整个恢复过程中保持稳定性。此方法促进了治疗应用中pDNA的预纯化。
摘要:以原始形式和含有碳纳米管(CNT)或Fe 2 O 3纳米颗粒(NP)(NPS)的超高分子量聚乙烯(UHMWPE)的薄薄片。CNT和Fe 2 O 3 NP的重量百分比在0.01%至1%之间。通过传输和扫描电子显微镜以及通过能量分散X射线光谱分析(EDS)来确认UHMWPE中CNT和Fe 2 O 3 NP的存在。使用衰减的总反应傅立叶转化红外(ATR-FTIR)光谱和UV-VIS吸收光谱光谱光谱光谱光谱法研究了嵌入式纳米结构对UHMWPE样品的影响。ATR-FTIR光谱显示了UHMWPE,CNTS和Fe 2 O 3的特征。关于光学性能,无论嵌入纳米结构的类型如何,都观察到光吸收的增加。从光吸收光谱中确定允许的直接光能差距值:在这两种情况下,它都随着CNT或Fe 2 O 3 NP浓度的增加而降低。将提出和讨论获得的结果。
钙钛矿结构 [1] 及其几乎无限适应性的衍生物阵列,必须算作材料科学中最重要的结构之一,其基本的 ABX 3(A = 大阳离子;B = 较小的阳离子;X = 阴离子)结构原型有助于铁电、[2] 压电、[3] 超导、[4] 光化学 [5] 和许多其他重要的技术特性。近来,随着混合 [3,6–8] 或全无机卤化物钙钛矿 ABX [9,10] 结构制造技术的快速发展,人们对钙钛矿的兴趣进一步增加。其中 A 是有机或碱金属反离子,B 通常是铅或锡,X 是卤素,这使得具有光学和光伏特性的材料 [11,12] 可用于太阳能电池、[13,14] 离子导电材料、[15] 超级电容器 [16] 和其他储能设备 [17]。然而,块状卤化物钙钛矿具有反应性,容易发生表面水合 [18] 相变 [19,20] 和高缺陷密度 [21],从而降低了其性能和寿命。因此,人们开发出了降维卤化物钙钛矿,重点关注胶体、[22] 二维、[23] 量子点、[24] 以及薄膜中的分子级 [25] 制备。虽然在如此低的维度上形成钙钛矿可以增强一些理想的特性,但也会增加其降解的趋势,尽管表面钝化可以减少薄膜中的分解。[26] 尽管如此,维度在纳米尺度上仍然是设计和微调卤化物钙钛矿物理性质的关键,因为它在决定电子结构方面起着关键作用。[27]
随着文明、科技和商品生产的发展,全球废弃物数量不断增加,造成了空气、土地和海洋的污染。 [1] 据估计,到 2050 年,废弃物产量可能达到 34 亿吨,是目前的两倍多。 [2] 为了解决这个迅速增长的问题,全球社会需要通过“从摇篮到坟墓”的方案,使用对环境影响微乎其微的可回收、零废弃和生物友好型材料,包括原材料的应用和基于绿色化学的整体加工。 [3,4] 合成表面活性剂及其降解产物是不断释放到环境中的最主要污染物之一。 [5] 这是因为表面活性剂被视为制造乳液的先决条件,乳液是两种不混溶液体在外部稳定的体系,
摘要 为了设计用于治疗和诊断应用的药物输送剂,了解共价功能化碳纳米管穿透细胞膜和与细胞膜相互作用的机制非常重要。在这里,我们报告了聚苯乙烯和羧基封端聚苯乙烯改性碳纳米管的全原子分子动力学结果,并展示了它们在模型脂质双层中的易位行为以及它们将布洛芬药物分子输送到细胞中的潜力。我们的结果表明,功能化碳纳米管在数百纳秒内被膜内化,并且药物负载进一步提高了内化速度。负载和未负载的管都通过非内吞途径穿过双层的最近小叶,在研究的时间内,药物分子仍然被困在原始管内,同时仍然附着在聚苯乙烯改性管的末端。另一方面,羧基封端的聚苯乙烯功能化可使药物完全释放到双层膜的下层,而不会对膜造成损坏。这项研究表明,聚苯乙烯功能化是一种有前途的替代方案,并作为基准案例促进了药物输送。
近年来,微/纳米级材料结构的合理设计引起了人们的极大兴趣,因为它们可以改变材料的物理性质。例如,垂直排列的纳米线(NW)可以调节表面的光学性质,因为它们的几何形状(直径、高度、间距)可以调整光的约束和吸收。因此,光伏应用对光收集能力的提高有着很大的需求。1碳纳米管(CNT)阵列可以构建高密度的3D集成电路架构。不同功能层(如传感、存储、处理)2之间的连接性空前增强,这非常适合用于物联网(IoT)等数据密集型技术。对于上述所有实现以及其他实现,在处理密集排列的1D纳米结构阵列时保持垂直方向是至关重要的。然而,不同的制造步骤可能会偏离这一期望方向。据报道,例如,在通过扫描电子显微镜进行表征时,暴露于电子束会使半导体纳米线弯曲,随后形成纳米线束。3 – 6 涉及湿法蚀刻或清洗的程序也会导致纳米线 7 – 9 和碳纳米管的垂直排列重新成形。在所有这些情况下,都会发生干燥步骤,其中相邻纳米柱之间的毛细管弯月面会产生横向力,可能使它们接触 10,11 并最终组装在一起。
摘要:我们报告了异构性纯和原始C 120耗油管的第一个实验表征,[5,5] C 120 -D 5D(1)和[10,0] C 120 -D 5H(10766)。这些新分子代表迄今为止分离的最高纵横比所有分子,例如,先前最大的空笼子富勒特管为[5,5] C 100 -D 5D(1)。与C 60 -C 90富勒烯研究的三十年相比,20个碳原子的增加代表了巨大的飞跃。此外,[10,0] C 120 -D 5H(10766)FullerTube具有源自C 80 -D 5H的端盖,是一种新的FullerTube,其C 40端率尚未通过实验隔离。对各向异性极化性和UV -VIS的理论和实验分析将C 120异构体I分配为[5,5] C 120 -D 5D(1)富勒图管。C 120异构体II匹配A [10,0] C 120 -D 5H(10766)FullerTube。这些结构分配得到了拉曼数据的进一步支持,显示了[5,5] C 120 -D 5D(1)的金属特征和C 120 -D 5H(10766)的非金属特征。STM成像揭示了一个管状结构,其纵横比与[5,5] C 120 -D 5D(1)富集管一致。具有不适合晶体学的微克量,我们证明了DFT各向异性极化性,可通过长期接受的实验分析(HPLC保留时间,UV-VIS,Raman和STM)增强,可以协同使用(带有DFT)(带有DFT)来降低选择,预测,预测,预测,分配C 120 FullerTube cantube untertube cantube untertube结构。从数学上可能的IPR C 120结构中,这种各向异性极化范式非常有利地将管状结构与碳烟灰区分开。识别异构体I和II是令人惊讶的,即,2个纯化的异构体,用于两个广泛区分特征的可能结构。这些金属和非金属C 120富勒伯异构体为基础研究和应用开发打开了大门。