附图列表 图 (1-1): - 本项目的风能转换系统框图 .............................................................................. 10 图 (3-2):- 水平轴和垂直轴风力涡轮机视图 .............................................................................. 16 图 (3-3): - 上风向三叶片 HAWT 和下风向两叶片 HAWT 示意图 17 图 (3-4): - 直接驱动和齿轮驱动风力涡轮机的内部结构 ............................................................. 18 图 (3-5):- 水平轴风力涡轮机的配置 ............................................................................................. 19 图 (3-6): - 垂直轴风力涡轮机所需的零件和组件 ............................................................................. 20 图 (3-7): - Simulink 中风力涡轮机模型的参数设置 ............................................................................. 22 图 (3-8): - 具有设置涡轮机参数的涡轮机功率特性 ............................................................................. 22 图 (3-9): - 鼠笼感应发电机剖面图 (Wenping Cao,2012 年 3 月) ............................................................................................................................................. 24 图(3-10): - 双馈感应发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................................. 25 图 (3-11): - 同步发电机剖面图 ............................................................................................................................. 27 图 (3-12): - 永磁同步发电机剖面图 (Wenping Cao, March 2012) ............................................................................................................................. 28 图 (3-13): - Matlab 中永磁同步机的配置 (用于项目) ............................................................................................................................. 31 图 (3-14): - Matlab 中永磁同步机的参数 (用于项目) ............................................................................................................. 32 图 (4-15): - 风能转换系统的电力电子部分框图 ............................................................................................................................. 34 图 (4-16): - 三相桥式整流器的电路图 (Rashid, 2014) ............................................................................................. 35 图 (4-17): - 输入波形和三相桥式整流器的输出电压 (Rashid, 2014) ...................................................................................................................................... 36 图 (4-18):- 降压转换器的电路图 (Rashid, 2014) ...................................................................... 39 图 (4-19): - 模式 1 的降压转换器等效电路图 (Rashid, 2014) ............................................. 40 图 (4-20):- 模式 2 操作的降压转换器等效电路图 (Rashid, 2014) ............................................................................................................................................... 40 图 (4-21):- 电感电流连续流动时降压转换器的输入和输出电压和电流的波形 ............................................................................................. 41 图 (4-22): - 恒压控制图像 ............................................................................................................. 45 图 (4-23): - 恒流控制图像 ............................................................................................................. 46 图 (4-24):- 风能转换系统的电池参数设置 ............................................................................. 47 图 (4-25):- 电池的标称电流放电特性 ............................................................................................. 48 图 (5-26):- 不同桨距角值的风力涡轮机特性 ............................................................................. 50 图 (5-27):- 相间电感相对于转子电角度的变化 ............................................................................. 51 图 (5-28): - 降压转换器的等效电路 ............................................................................................. 52 图 (5-29): - 充电控制示意图 (Her-Terng Yau, 2012) ........................ 54 图(5-30): - Buck 转换器等效电路 .............................................................................. 55
风力涡轮机比例模型的风洞试验是评估风力涡轮机空气动力学的一种经济有效的方法,可节省时间、成本并避免与全尺寸试验相关的不确定性。然而,风洞试验转子缩放程序的主要限制是无法将雷诺数与全尺寸相匹配。本文介绍了 DTU 10 MW 风力涡轮机风洞 1/75 比例转子的非平凡气动弹性优化设计、实现和实验验证。更具体地说,这项工作是为浮动式海上风力涡轮机 (FOWT) 应用而开发的(Lifes50+,Bayati 等人,2013 年,2014 年);尽管如此,所报告的方法和得出的结论在风力涡轮机转子缩放方面具有普遍有效性。最近也在风力涡轮机缩放方面做出了类似的努力(Bredmose,2014 年)。此外,在(Bottasso 等人,2014 年)中可以找到对缩放效应的深入分析,该分析涉及米兰理工大学风洞的先前活动:这项工作涉及气动弹性模型设计程序的定义,并且在推力和扭矩值匹配方面获得了良好的结果,并且正确缩放了叶片结构行为,同时考虑了弯曲 - 扭转缩放(Campagnolo 等人,2014 年)。
1 挪威科技大学海洋技术系,NO-7491,特隆赫姆,挪威 2 国家可再生能源实验室,戈尔登,CO 80401,美国 3 代尔夫特工业大学,Mekelweg 2, 2628 CD 代尔夫特,荷兰 4 汉诺威莱布尼茨大学,驱动系统和电力电子研究所,Postfach 6009,30060 汉诺威,德国 5 亚琛工业大学风力驱动中心 CWD,Campus-Boulevard 61,52074 亚琛,德国 6 亚琛工业大学机械元件和系统工程研究所 MSE,Schinkelstrasse 10,52062 亚琛,德国 7 鲁汶天主教大学,机械工程,LMSD 分部,哈弗莱,比利时 8 Flanders Make,机械和机电一体化系统动力学核心实验室,哈弗莱,比利时 9 University of Strathclyde, 16 Richmond St, Glasgow G1 1XQ, United Kingdom 10 Institute for Energy Systems, School of Engineering, Edinburgh, United Kingdom 11 DTU Wind Energy, Frederiksborgvej 399, 4000 Roskilde, 丹麦 12 Equinor ASA, Sandslivegen 90, 5254 Sandsli, 挪威 13 机械工程系,布鲁塞尔自由大学 / OWI-Lab, B-1050, 布鲁塞尔, 比利时
第 2 章:文献综述 2.1 项目背景 风能已成为一种流行的绿色能源。十多年来,风能已被用于各种用途。然而,利用风能发电是一种较新的应用。目前,世界各地都有大片风车场,即风电场。其中一个值得注意的趋势是小规模使用风能。个人和组织可以购买或建造小型风力涡轮机来发电,满足家庭和商业能源需求。有机会将所生产的电力供应给电网,并允许公司购买以满足他们的需求。(Brinkman,Robert,《可持续发展导论》第 74 页)。传统的“风力涡轮发电机系统 (WTGS)”在水平轴上旋转,由三叶风轮组成,转速高达 1500/750 rpm,变速箱的传动比大于 60(见图 2.1)。异步电机具有许多优点,例如设计简单、能够在不同操作条件下工作以及资本和运营成本低。异步发电机通常与鼠笼和滑环电机等感应电机一起使用。滑环转子位于机器的转子侧,连接功率转换器或电阻器,控制电流流动,使机器以不同的速度运行。
在风能转换系统 (WECS) 中,电能质量和能量转换效率是控制算法的关键目标。这两点是自相矛盾的,很难权衡,因为提高转换效率也可能会增加输出信号的不稳定性。在当前的工作中,我们提交了一种风力涡轮机控制方案,以确保稳定电力并实现基于电池的变速 PMGS 系统中的可变负载请求。在提交的方案中,模型预测控制 (MPC) 与模糊逻辑相结合,以实现这两种不同方法的优势。建议的控制器可以提高风力涡轮机的功率可靠性性能。根据获得的结果,所提出的拓扑克服了传统的比例/积分 (PI) 模型,在步进超调响应和总谐波失真测量方面分别实现了近 1.1% 和 1.13% 的利润。
海上风力涡轮机 (OWT) 的运行和维护在海上风电场的发展中起着重要作用。与运营相比,考虑到海上运营的实际限制和相对较高的成本,维护是能源平准化成本的关键要素。维护对海上风电场生命周期的影响非常复杂且不确定。维护策略的选择影响海上风电场的整体效率、利润率、安全性和可持续性。对于海上风电项目,在选择维护策略后,将考虑进度规划,这是一个优化问题。现场维护将涉及复杂的海上作业,其效率和安全性取决于实际因素。此外,海上维护对环境的负面影响值得关注。为了解决这些问题,本文回顾了 OWT 维护的最新研究,涵盖策略选择、进度优化、现场运营、维修、评估标准、回收和环境问题。总结和比较了许多方法。描述了 OWT 运营和维护研究的局限性和工业发展的不足。最后,确定了未来维护策略研究的有希望的领域。
海上风力涡轮机 (OWT) 的运营和维护在海上风电场的发展中起着重要作用。与运营相比,考虑到海上运营的实际限制和相对较高的成本,维护是能源平准化成本的关键要素。维护对海上风电场生命周期的影响非常复杂且不确定。维护策略的选择会影响海上风电场的整体效率、利润率、安全性和可持续性。对于海上风电项目,在选择维护策略后,将考虑进度规划,这是一个优化问题。现场维护将涉及复杂的海上作业,其效率和安全性取决于实际因素。此外,海上维护对环境的负面影响值得关注。为了解决这些问题,本文回顾了 OWT 维护的最新研究,涵盖策略选择、进度优化、现场运营、维修、评估标准、回收和环境问题。总结和比较了许多方法。描述了 OWT 运营和维护研究的局限性和工业发展的不足。最后,确定了未来维护策略研究的有希望的领域。
海上风电机组的运行和维护在海上风电场的发展中起着重要作用。与运营相比,考虑到海上运营的实际限制和相对较高的成本,维护是平准化能源成本中的一个关键因素。维护对海上风电场生命周期的影响非常复杂且不确定。维护策略的选择影响海上风电场的整体效率、利润率、安全性和可持续性。对于海上风电项目,在选择了维护策略后,将考虑进度规划,这是一个优化问题。现场维护将涉及复杂的海上作业,其效率和安全性取决于实际因素。此外,海上维护对环境的负面影响值得关注。针对这些问题,本文回顾了海上风电维护的最新研究成果,涵盖策略选择、进度优化、现场作业、维修、评估标准、回收和环境问题。总结和比较了多种方法。
VAASA技术与创新部门作者:Akseli Juslin的论文名称:用电池储能补充Kaplan水力发电涡轮机:用于共享的FCR-N市场参与和重新打击涡轮控制 - 涡轮控制 - diplomi的大小电气工程讲师:汉努·拉克森(Hannu Laaksonen)完成年份:2021年:60摘要:北欧电气系统在近几十年来降低了电力质量,同时花费在正常频率区域之外的同时增加了电力。将来,该网络将包括越来越多的可再生能源的发电厂,这些发电厂本质上是不规则的。这项工作的目的是调查与卡普拉水力发电涡轮机一起安装储能。因此,在工作中探讨了为存储不同技术以存储能源的工作。为此,选择了这些技术之一。Energy Warehouse的技术。在使用中使用的水电工厂的使用中,卡普兰涡轮机进行了几次测试。这些测试的目的是尺寸尺寸的储能,测试和对涡轮控制参数进行细调的尺寸。电池的能量存储可以通过参与频率控制的储备贸易来减少涡轮控制需求。一个新的控制器负责分配储能和涡轮机之间的负载,正在开发VEO。据估计,本文提出的解决方案估计在投资的还款时间约5年。