上下文。磁性零点与高能冠状现象相关,例如太阳浮动,通常是重新计算和颗粒加速度的位置。磁性零点的动态扭曲可以在其风扇平面内产生开尔文 - 螺旋不稳定(KHI),并且可以激发脊柱扇形重新连接,并在持续扭曲下的零点的相关崩溃。目标。本文旨在比较在KHI模拟中的各向同性和各向异性粘度的影响,并在动态扭曲的磁性空点中崩溃。方法。,我们使用具有自定义各向异性粘度模块的3D磁水动力学Lare3d进行了模拟。进行了一对高分辨率模拟,一种使用各向同性粘度,另一种使用各向异性粘度,使所有其他因素保持相同。我们详细分析了结果。在粘度和电阻率的一系列值范围内进行了进一步的参数研究。结果。这两个粘度模型都允许KHI的生长和无数点的最终崩溃。在所有研究的参数上,各向异性粘度允许增长的不稳定性,而各向同性粘度在某些情况下会降低稳定性的不稳定性。尽管与各向异性粘度相关的粘性加热通常较小,但欧姆加热占主导地位,并通过不稳定性产生的当前床单增强。使用各向异性粘度时,这会导致更高的总体加热率。当采用各向异性粘度时,零点的崩溃会明显发生。
点的扭转角可以通过改变费米能量、拓扑绝缘体收缩宽度和量子阱带隙来进行调控。27但目前还没有关于分子器件扭转角的系统研究。本文基于非平衡格林函数(NEGF)结合密度泛函理论(DFT),28,29研究了由两个V型锯齿边石墨烯纳米带(GNR)电极连接不同扭转角的CuPc分子构成的CuPc分子器件的量子输运性质。通过改变扭转角可以控制器件的局域自旋态和相关的量子输运性质。结果表明,扭转双层CuPc分子(TTBCPM)的HOMO-LUMO能隙、自旋滤波效率(SFE)和自旋相关电导随扭转角变化。当q较大时,电导和SFE的变化趋势几乎相反。当q=0时电导最大,当q=60时SFE最大,提出了这些现象的物理机制,并通过分析透射光谱、分子能级谱和散射态,进一步理解了具有扭转角的量子传输现象。
我们考虑了一大类拉姆齐干涉测量协议,这些协议通过在相位信号印在 N 个粒子的集体自旋上之前和之后进行压缩和非压缩操作而得到增强。我们报告了针对任何给定粒子数和 (非) 压缩强度的分析优化。即使在压缩和非压缩相互作用期间包含实验相关的退相干过程,也可以应用这些结果。然而,本文不考虑两种相互作用之间的噪声。这提供了压缩回波协议的广义表征,恢复了许多已知的量子计量协议作为局部灵敏度最大值,从而证明了它们的最优性。我们发现了一个新的协议。其灵敏度增强依赖于压缩的双重反转。在一般的回声协议类别中,新发现的过度解扭曲协议由于其在强集体失相情况下的海森堡缩放而被挑选出来。
我们研究了外部磁场下双自旋模型中的热超密集编码。详细介绍了它对磁场、自旋压缩强度和温度的依赖性。我们现在的主要目标是研究如何在磁场、自旋压缩强度和温度存在的情况下提高热超密集编码容量。结果表明,通过设置输入量子关联的值,密集编码趋于有效值。我们进行这项研究的最重要动机是检查超量子不和谐 (SQD) 的热性质与密集编码之间的关系。结果表明,我们通道上 SQD 的热性质使我们能够确定系统何时以及在什么条件下适合有效的密集编码。我们的建议可能导致该方案对量子信息处理有效。
一种名为 G.fast 的超高速数字用户线 (DSL) 技术对于超高速宽带互联网接入服务至关重要。在 G.fast 中,从分配点到客户处所安装的 250 m 长的现有电缆束用于支持高达 106 MHz 或 212 MHz 频率的千兆数据传输(聚合 1 Gbit/s)。由于使用非屏蔽电缆,且频率是超高速 DSL2 (VDSL2) 的 12 倍,因此研究电缆在插入损耗和串扰耦合方面的性能非常重要。本文研究了小铜束中 10 对非屏蔽双绞铜缆的电缆绞合率对插入损耗和串扰耦合的影响。基于马来西亚安装的标准电缆开发了一个仿真模型。通过将得到的结果与文献中发表的结果进行比较,验证了模型的可靠性。此外,通过改变100 m电缆的绞距来控制其绞合率,以确定其对插入损耗和串扰耦合的影响。结果表明,较高的绞合率可以降低远端串扰,但会增加插入损耗和近端串扰。
Moiré迷你吧类似于TBLG。 DMI但是,会更改图片并使系统更具异国情调。 TFBL中的DMI诱导了任何扭曲角度的丰富拓扑元音带结构。 扭曲角转向磁通大厅和北部电导率的控制旋钮。 与DMI的TFBL中的魔法角度出现在魔术角中。 在连续体的下限中,频带结构重建形成拓扑平面带的束。 对带隙,拓扑特性,平面频带数量,Hall和Nernst电导率的扭曲角度控制的奢华控制使TFBL从基本和应用的角度成为新的设备。 简介。 二维(2D)具有内在磁性的材料最近已实现[1,3],在2D物质研究中开放了新的视野[4-26]。 在这些玻色子狄拉克材料中,发现磁各向异性可以克服热波动并在有限温度下稳定磁顺序。 2D磁系统中的外来物理学引起了寻找新型纳米磁量子设备的重要关注。 在很大程度上,骨气狄拉克材料的理论研究和实验实现是由其费米子对应物激励的。 对石墨烯的研究表明Moiré迷你吧类似于TBLG。DMI但是,会更改图片并使系统更具异国情调。TFBL中的DMI诱导了任何扭曲角度的丰富拓扑元音带结构。扭曲角转向磁通大厅和北部电导率的控制旋钮。与DMI的TFBL中的魔法角度出现在魔术角中。在连续体的下限中,频带结构重建形成拓扑平面带的束。对带隙,拓扑特性,平面频带数量,Hall和Nernst电导率的扭曲角度控制的奢华控制使TFBL从基本和应用的角度成为新的设备。简介。二维(2D)具有内在磁性的材料最近已实现[1,3],在2D物质研究中开放了新的视野[4-26]。在这些玻色子狄拉克材料中,发现磁各向异性可以克服热波动并在有限温度下稳定磁顺序。2D磁系统中的外来物理学引起了寻找新型纳米磁量子设备的重要关注。在很大程度上,骨气狄拉克材料的理论研究和实验实现是由其费米子对应物激励的。对石墨烯的研究表明
ii.摘要................................................................................................................................................ 6
人造肌肉是那些在应用外部刺激时像骨骼肌肉一样放松的材料的名称。刺激可能是化学或物理刺激(Tondu,2015)。有几种基于不同工作机制创造人造肌肉的方法。一些最常见的是电化学致动,静电执行器,压电,碳纳米管(CNT),形状记忆合金(SMA),气动肌肉(PMS)和复合材料。人造肌肉引起了许多研究人员的注意,此前发动机和电动机为机械系统供电。人造肌肉已用于生物医学设备和仿生机器人的设计和开发。但是,理想的仿生机器人需要专门设计的执行器,以复制自然肌肉的行为。天然肌肉无可挑剔地能够感测,作用和计算。具有先进和更高性能的生物医学和机器人应用所必需的人造肌肉的复制品。在这一发展中,大多数人造肌肉在一个或另一个方面都面临着局限性,因此主要未能与哺乳动物的肌肉竞争。这导致了进一步的好奇心,并且最近在人工肌肉领域加速了研究。最近,Haines等。引入了更好的替代品,用于具有更好性能的昂贵现有人造肌肉。我们将在后面的一节中解释这些新型肌肉的制造过程。肌肉是通过扭曲和盘绕和一些热处理制成的,因此我们称它们为扭曲和盘绕的聚合物(TCP)肌肉(Haines等,2014a)。这些肌肉具有较大的菌株(B 50%),高功率与重量比可与喷气发动机(5.26 kW)相当,并且可以举起比人肌肉大100倍的负载。