深度神经网络的最新进展成功地改善了各种学习问题[40,8,26,19,20]。但是,对于监督学习,大量的训练数据仍然是学习准确的深层模型的关键。尽管可能可用于一些预先规定的域,例如ImageNet [7],但对于每个临时目标域或任务而言,手动标签通常很难或昂贵。缺少IN-ININAIN标记的数据阻碍了在许多实际问题中拟合模型的应用。在没有来自目标域的标记数据的情况下,已经出现了无监督的域适应(UDA)方法,以减轻数据分布的域移动[2,1,1,5,37,30,18,3,3,17]。它与无监督的学习有关,因为它仅需要从源域和目标域的零标签手动标签。在最近关于UDA的工作,这是Long等人提出的开创性工作。[22,25]旨在最大程度地减少深神经网络中源和目标域之间的差异,在此,在该网络中,域差异通过最大值
高光谱图像 (HSI) 分类旨在为每个像素分配一个唯一标签,以识别不同土地覆盖的类别。现有的 HSI 深度学习模型通常采用传统学习范式。作为新兴机器,量子计算机在嘈杂的中尺度量子 (NISQ) 时代受到限制。量子理论为设计深度学习模型提供了一种新的范式。受量子电路 (QC) 模型的启发,我们提出了一种受量子启发的光谱空间网络 (QSSN) 用于 HSI 特征提取。所提出的 QSSN 由相位预测模块 (PPM) 和受量子理论启发的类测量融合模块 (MFM) 组成,以动态融合光谱和空间信息。具体而言,QSSN 使用量子表示来表示 HSI 长方体,并使用 MFM 提取联合光谱空间特征。量子表示中使用了 HSI 长方体及其由 PPM 预测的相位。使用 QSSN 作为构建块,我们进一步提出了一种端到端的量子启发式光谱空间金字塔网络 (QSSPN),用于 HSI 特征提取和分类。在这个金字塔框架中,QSSPN 通过级联 QSSN 块逐步学习特征表示,并使用 softmax 分类器进行分类。这是首次尝试将量子理论引入 HSI 处理模型设计。在三个 HSI 数据集上进行了大量实验,以验证所提出的 QSSPN 框架相对于最新方法的优越性。
网络地热的工作地热加热和冷却系统,也称为地面源热泵(GHP),使用地面而不是空气中的热能来适应建筑物的温度。整个系统都是由水平和垂直管道网络制成的,该网络是一种水基溶液,可在管道内传输热能,以及温暖而凉爽的单个房屋和建筑物的热泵。地面将基于水的溶液在恒定温度下通过管道循环。热泵将热能从溶液中拉到温暖的建筑物。同样,这些系统通过溶液将热能分散到冷却建筑物中。在网络地热系统中,地热加热和冷却系统连接,可以使多个建筑物受益 - 使用一栋建筑物的废热来加热附近的另一座建筑物。
时空时间序列通常是通过放置在不同位置的监视传感器来收集的,这些传感器通常由于各种故障而包含缺失值,例如机械损坏和内部中断。归纳缺失值对于分析时间序列至关重要。恢复特定的数据点时,大多数现有方法都考虑了与该点相关的所有信息,较小的因果关系。在数据收集期间,不可避免地包括一些未知的混杂因素,例如,时间序列中的背景噪声和构造的传感器网络中的非杂货快捷方式边缘。这些混杂因素可以打开后门路径并在输入和输出之间建立非泡沫相关性。过度探索这些非毒性相关性可能会导致过度拟合。在本文中,我们首先从因果的角度重新审视时空时间序列,并展示如何通过前门调整来阻止混杂因素。基于前门调整的结果,我们引入了一种新颖的C技术性-Ware Sp aTiot e Mpo r al图神经网络(CASPER),其中包含一种新型的基于及时的解码器(PBD)和空间 - 可导致的因果发生(SCA)。PBD可以减少混杂因素的影响,而SCA可以发现嵌入之间的因果关系稀疏。理论分析表明,SCA根据梯度值发现因果关系。我们在三个现实世界数据集上评估Casper,实验结果表明,Casper可以胜过基准,并可以有效地发现因果关系。
通过虚拟模型为个性化医疗保健提供机会,DTS代表了精密健康和个性化医学领域的范式转变。在医疗保健中,DTS可以定义为物理实体(细胞,组织,器官,患者和卫生系统)的高度详细和动态的虚拟复制品,从而再现了物理对应物的结构,行为和背景(Qi等人,2021年)。这些虚拟的对应物不断使用实时数据进行更新,以模拟和预测健康结果,从而优化了临床决策(Fuller等,2020)。dts实时整合来自多个来源的数据,以模拟健康结果,并可以通过实现更精确,及时,及时,及时的临床干预措施,最终提高患者治疗效率,从而适应每个患者,从而增加主动的医疗保健管理。
国际医学与生物系统物理学学院6-8 2020年11月8日结论:Alexnet和Googlenet体系结构的比较,以对树类型进行分类
微分同胚可变形图像配准在许多医学图像研究中至关重要,因为它提供了独特的属性,包括拓扑保存和变换的可逆性。最近基于深度学习的可变形图像配准方法利用卷积神经网络(CNN)从合成基本事实或相似性度量中学习空间变换,从而实现快速图像配准。然而,这些方法往往忽略了变换的拓扑保存和变换的平滑性,而平滑性仅由全局平滑能量函数来强制执行。此外,基于深度学习的方法通常直接估计位移场,这不能保证逆变换的存在。在本文中,我们提出了一种新颖的、有效的无监督对称图像配准方法,该方法最大化微分同胚图空间内图像之间的相似性,并同时估计正向和逆变换。我们使用大规模脑图像数据集在 3D 图像配准上评估了我们的方法。我们的方法实现了最先进的配准精度和运行时间,同时保持了理想的微分同胚特性。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
•专用网络是一个针对一个B2B客户的专用移动网络,已经使用4G技术部署,但是5G中的新功能(主要是延迟)将允许更多用例。预期5G的私人网络质量化。•专用网络与公共5G网络是相同的技术,但是实现将是模块化和简单的。灵活性是关键: