基于CRISPR的单细胞转录组筛选是有效的遗传工具,可同时评估由一组指南RNA(GRNA)靶向的细胞的表达式,并从观察到的扰动中推断靶基因函数。然而,由于各种局限性,这种方法在检测弱扰动方面缺乏灵敏度,并且在研究主调节器(例如转录因子)时基本上是可靠的。为了克服检测微妙的GRNA诱导的转录组扰动和对响应最快的细胞进行分类的挑战,我们开发了一种新的监督自动编码器神经网络方法。我们稀疏的监督自动编码器(SSAE)神经网络提供相关特征(基因)和实际扰动细胞的选择。我们将此方法应用于基于基于缺氧的长期非编码RNA(LNCRNA)的子集的基于内部单细胞CRISPR干扰(CRISPRI)转录组筛查(CROCPRI)转录组筛选(CROP-SEQ),该子集受缺氧调节的疾病,该疾病在肺腺癌(Lung adenacoarcinoma)(LUAD)的背景下促进了肿瘤的侵略性和耐药性。针对LNCRNA的子集进行了经过验证的GRNA的农作物序列库,并且作为阳性对照,HIF1A和HIF2A(低氧反应的2个主要转录因子)在3、6或24 h期间在正态氧中培养的A549 LUAD细胞中转导的2个主要转录因子。我们首先通过确定在低氧反应的时间开关期间确定其敲低的特定效应,从而验证了HIF1A和HIF2上的SSAE方法。接下来,SSAE方法能够检测出稳定的短缺氧依赖性转录组特征,该特征是由某些LNCRNA候选者的敲低诱导的,表现优于先前发表的
丘脑下核(STN)对于行为控制至关重要。因此,其失调与包括帕金森氏病在内的神经和神经精神疾病有关。针对STN的深脑刺激(DBS)成功缓解了帕金森运动症状。 但是,情绪低落和抑郁症是情感副作用。 stn与para -Stn相邻,与食欲和厌恶行为相关。 针对STN的 DB可能会无意中调节para -Stn,导致厌恶。 另外,STN介导了厌恶。 为了研究STN和厌恶之间的因果关系,使用小鼠的光遗传学来解决情感行为。 选择性启动子允许STN(例如PITX2)与Para -STN(TAC1)解离。 急性光刺激会通过STN和Para -Stn厌恶。 但是,只有STN刺激提示引起有条件的回避,并且只有STN刺激中断正在进行的糖自助给药。 电生理记录确定了苍白神经元中突触后反应,以及腹侧pallidum中STN末端的选择性光静静态,复制了STN诱导的厌恶。 将STN识别为厌恶学习的来源,为情感影响贡献了神经生物学的基础。针对STN的深脑刺激(DBS)成功缓解了帕金森运动症状。但是,情绪低落和抑郁症是情感副作用。stn与para -Stn相邻,与食欲和厌恶行为相关。DB可能会无意中调节para -Stn,导致厌恶。另外,STN介导了厌恶。为了研究STN和厌恶之间的因果关系,使用小鼠的光遗传学来解决情感行为。选择性启动子允许STN(例如PITX2)与Para -STN(TAC1)解离。急性光刺激会通过STN和Para -Stn厌恶。但是,只有STN刺激提示引起有条件的回避,并且只有STN刺激中断正在进行的糖自助给药。电生理记录确定了苍白神经元中突触后反应,以及腹侧pallidum中STN末端的选择性光静静态,复制了STN诱导的厌恶。将STN识别为厌恶学习的来源,为情感影响贡献了神经生物学的基础。
在Guinney及其同事在2015年的具有里程碑意义的研究中的共识分子亚型(CMS)的定义,基于大量转录组的专业填充,已将结直肠癌的新时代视为具有不同的实体,并具有不同的实验,并具有特定的基因疗法,基因分子疗法,临床上,分子,分类(Morecular),分类(Molecormult)。从那时起,CMS分类已成为描述大肠癌多样性的重要参考。这显着来自更专门的深入研究,表明该分类也与肿瘤微环境有关(TME;参考2),miRNA(3)或表观基因组景观(4)。表1总结了每个子类型的各种特征,我们将读者引用了几个出色的评论,以获取更多细节(5,6)。Brie pl Y,CMS1组(占患者的14%),称为“免疫”,在微卫星不稳定性的患者中富含(MSI;参考1)。“典型” CMS2(患者的37%)和“代谢” CMS3(13%的患者)亚组的特征都是上皮类型和良好的
导管癌原位(DCIS)是一种无创类型的乳腺癌类型,具有侵入性和影响死亡率的高度可变的潜力。目前,由于缺乏特定的生物标志物,可将低风险病变与较高进展风险的患者区分开来,因此许多DCI患者被过度治疗。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。 获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。 我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。 在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。 此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。 在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。 与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。 这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。在这项研究中,我们分析了来自不同患者的57个纯DCI和313种侵入性乳腺癌(IBC)。获得了三个级别的基因组数据;基因表达,DNA甲基化和DNA拷贝数。我们进行了亚型分层分析和DCI和IBC之间的关键差异,这些差异表明亚型特定进展。在基底样亚型的肿瘤中发现了显着差异:基础样的DCI的增殖较小,并且比基底样IBC显示出更高的分化程度。此外,与IBC相反,在DCIS之间未识别核心基底肿瘤(以与基底质心相关的高度相关)。在拷贝数水平上,与基底类的IBC相比,基底样的DCIS显示出较少的拷贝数畸变。与基底样的DCI和正常组织相比,通过甲基甲基化的分析是基底样IBC中多重原钙粘着蛋白基因的高甲基化,这可能是由远程表观遗传沉默引起的。这表明在基础类亚型的IBC中特异性地对细胞粘附相关基因进行沉默。我们的工作证实,在研究从DCIS到IBC的进展时,亚型地层是必不可少的,并且我们提供了证据,表明基底样DCIS表现出较小的侵略性,并质疑基底样DCIS是基底样DCIS是基础类似基底类似的乳腺癌乳腺癌的直接前体。
Leida的独特能力在于其捕获瞬时耦合模式的能力,这是根据大脑区域之间的相位关系定义的。这些模式被概念化为类似于站立波模式的向量,代表了某些大脑区域在相位相连的构型,而另一些大脑区域在反相中有所不同。通过在特定时间间隔内以这些模式在其发生概率方面表征这些模式,Leida提供了一种统计上强大的方法来比较跨条件,组和个人的大脑动力学(Cabral等,2017)。这种敏感性将Leida定位为识别潜在神经标志物的有价值的工具,即脑动力学的可衡量和无偏见的特征。这种生物标志物具有改善诊断,监测治疗结果(Theranostics)和预测认知功能的希望。
Leida的独特能力在于其捕获瞬时耦合模式的能力,这是根据大脑区域之间的相位关系定义的。这些模式被概念化为类似于站立波模式的向量,代表了某些大脑区域在相位相连的构型,而另一些大脑区域在反相中有所不同。通过在特定时间间隔内以这些模式在其发生概率方面表征这些模式,Leida提供了一种统计上强大的方法来比较跨条件,组和个人的大脑动力学(Cabral等,2017)。这种敏感性将Leida定位为识别潜在神经标志物的有价值的工具,即脑动力学的可衡量和无偏见的特征。这种生物标志物具有改善诊断,监测治疗结果(Theranostics)和预测认知功能的希望。
阿尔茨海默氏病(AD)是最常见的神经退行性疾病,其特征是淀粉样蛋白β(aβ)斑块的积累和神经蛋白质缠结,由热磷酸化的tau蛋白(Balasaheb Chavan等人,20233)组成。随着测定技术的进步,血浆生物标志物越来越多地被证明具有检测和监测AD的潜力,从而超过了主要医疗中心的集水区(Dimtsu Assfaw等人,2024; Palmqvist等,2024年,2024年)。Current revised 2024 Alzheimer's Association (AA) criteria distinguish three broad categories of AD fluid biomarkers related to AD pathogenesis: (1) core AD fluid biomarkers [the CSF ratio of amyloid- β (A β 42/40), phosphorylated and secreted AD tau (p-tau 217, p-tau-181, and p-tau 231),(2)参与其他神经退行性病理学的非特异性生物标志物,包括神经纤维纤维光(NFL)和神经胶质纤维酸性蛋白(GFAP),以及(3)非AD病理学的生物标记物(血管脑损伤,Alpha-synuclein [Alpha-synuclein [αnyn and and nyn and])。鉴定痴呆症潜在病理的血浆生物标志物尤其有益于前驱或临床前阶段,为此,当前和新兴的疾病改良疗法更有可能有效(Ashton等人,2020年)。使用已知提供疾病早期迹象的血液生物标志物可能会促进表现出早期症状的患者的及时诊断,尤其是在早期和非典型表现中。AD中的基于血液的生物标志物与认知下降和纵向认知结果的早期指标有关(Dimtsu Assfaw等,2024)。例如,较低的血浆Aβ42/Aβ40比与较高的淀粉样蛋白斑块负担和认知障碍相关,并且可以在临床前疾病阶段检测到(Nakamura等,2018),使其可用于早期诊断和追踪疾病进展(Palmqvist等,2019)。在AD中观察到P-TAU181和P-TAU217的水平升高,是AD的早期和晚期的指标(Janelidze等,2020; Karikari等,2020)。血浆P-TAU在早期症状阶段增加,与从轻度认知障碍(MCI)到AD痴呆症的临床过渡(Thijssen等,2020)。nfl是轴突损伤的标记;虽然规格较少,但NFL的水平升高反映了更广泛的神经元损害(Mattsson等,2017)。GFAP反射星形细胞激活
结果:(1)在局部大脑连接组中,整个网络特征表现出低特征路径长度,并配对中度至高全球效率,这表明局部脑连接组构建的有效性。杏仁核连接组表现出比同侧海马和帕拉希公接连接组显示更长的特征路径长度和更弱的全球效率。(2)杏仁核连接组的轮毂分散在腹侧额叶,嗅觉区域,边缘,顶部,顶部区域和皮层下核,以及枢轴的海马连接组主要位于山缘,皮层和皮层下区域内。帕拉希公接连接组的轮毂分布类似于海马结构连接组,但缺乏半球间连接以及与皮层核的连通性。(3)每个ROI的大脑局部结构连接组的亚型通过层次聚类进行分类,双侧杏仁核连接组的亚型是杏仁核 - 前额叶连接组;杏仁核 - 外侧或对侧边缘连接组和杏仁核 - 伴随连接组。双侧海马连接组的亚型主要包括域半球中的海马冲向或对侧边缘连接组和前颞张 - 海马 - 腹部颞叶枕骨。parahampocampal连接组的亚型与海马的亚型表现出相似之处。
LEiDA 的独特功能在于它能够捕捉瞬时耦合模式,这些模式是根据大脑区域之间的相位关系定义的。这些模式被概念化为类似于驻波模式的矢量,表示一些大脑区域相位共变而其他大脑区域相位反变的配置。通过根据特定时间间隔内发生的概率来描述这些模式,LEiDA 提供了一种统计上稳健的方法来比较不同条件、群体和个体之间的大脑动态(Cabral 等人,2017 年)。这种敏感性使 LEiDA 成为识别潜在神经标记(可测量且无偏的大脑动态特征)的宝贵工具。此类生物标记有望改善诊断、监测治疗结果(治疗诊断)和预测认知功能。
1 南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。 和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。南非夸祖鲁·曼德拉医学院尼尔森R曼德拉医学院,南非德班,华盛顿大学全球卫生系5;美国西雅图,联邦政府大学农业科学研究所6,dos vales do jequitinhonha e Mucuri(UFVJM),UNA´ı,巴西。和7生物科学研究所,联邦米纳斯·格拉斯大学(UFMG),巴西Belo Horizonte。