胃食管反流病(GERD)是指胃内容物反流至食管,引起相应食管症状和/或并发症的疾病,典型症状为烧心、反流、胸痛,还可引起慢性咳嗽、哮喘、吸入性肺炎、咽炎等食管外症状,严重影响患者生活质量。GERD在西方国家的发病率为10%~20%,在亚洲为5.2%~18.3%(Jung,2011)。根据内镜表现分为非糜烂性反流病(NERD)、反流食管炎(RE)和Barrett食管(BE)三种类型。传统观点认为GERD的病理改变主要是胃酸或十二指肠胆汁反流刺激食管黏膜产生的化学性损伤所致,随着病情进展,病变逐渐累及黏膜层、黏膜下层、肌层及浆膜层。但大多数GERD患者在内镜下并无黏膜损伤,提示可能存在其他致病过程(Boeckxstaens et al., 2014; D'Souza et al., 2021; Sharma and Yadlapati, 2021)。近期研究表明,肠道菌群与宿主免疫系统的相互作用在胃肠道疾病(包括食管相关疾病)的发病机制中起关键作用(Gorkiewicz and Moschen, 2018; Dicks, 2022)。肠道菌群的多样性、稳定性、弹性和对生理、病理和环境变化的响应性使其成为许多疾病的有用生物标志物、诊断工具或治疗靶点(Magnusdottir et al., 2017; von Frieling et al., 2018)。虽然对GERD患者菌群的研究取得了一些进展,但之前的研究大多集中在食管和胃内的微生物。研究表明,正常人食管菌群主要由厚壁菌门中的革兰氏阳性链球菌组成(Hunt and Yaghoobi,2017;Deshpande et al., 2018)。然而,研究发现GERD患者食管内以拟杆菌门、变形菌门和梭杆菌门中的革兰氏阴性厌氧菌和微量需氧菌为主(Yang et al.,2009;Yu et al.,2019)。此外,慢性炎症已被证明在多种胃肠道疾病(如BE和食管癌)的发展中发挥作用,而慢性炎症引起的肠道菌群变化则进一步加速疾病的发生和发展(Ghoshal et al.,2012)。脂多糖(LPS)是革兰氏阴性菌外膜的重要组成部分,可能通过诱导NF-κB的表达来促进组织炎症。在动物模型中,高脂饮食通过调节肠道菌群上调炎症信号通路中的 IL-8/CXCL1 来促进 BE 进展为食管癌(Munch et al., 2019),证实了肠道菌群在疾病进展中的作用。GERD 患者肠道菌群的组成和功能仍在很大程度上未知,并且已经证明肠道菌群通过将宿主营养物质转化为
为了解决高光谱遥感数据处理中遇到的同构问题,提高高光谱遥感数据在岩性信息提取与分类的精度,以岩石为研究对象,引入反向传播神经网络(BPNN),对高光谱图像数据进行归一化处理后,以岩性光谱与空间信息为特征提取目标,构建基于深度学习的岩性信息提取模型,并使用具体实例数据分析模型的性能。结果表明:基于深度学习的岩性信息提取与分类模型总体精度为90.58%,Kappa系数为0.8676,能够准确区分岩体性质,与其他分析模型相比具有较好的性能。引入深度学习后,提出的BPNN模型与传统BPNN相比,识别精度提高了8.5%,Kappa系数提高了0.12。所提出的提取及分类模型可为高光谱岩矿分类提供一定的研究价值和实际意义。
心脏死亡(SCD)仍然是一个紧迫的健康问题,每年全球数十万。遭受SCD的人之间的杂项,从严重的心脏失败到看似健康的人,对有效的风险评估构成了重大挑战。主要依赖左心室的常规风险层次,仅导致植入可植入的心脏逆变剂的适度效率用于预防SCD。回应,艺术智能(AI)对个性化的SCD风险预测和调整预防策略有望为个别患者的独特性专案。机器和深度学习算法具有学习复杂数据和定义的终点之间的复杂非线性模式的能力,并利用这些模式来识别SCD的微妙指标和预测指标,而SCD的预测因素可能不会通过传统的统计分析而明显。但是,尽管AI有可能改善SCD风险层次,但仍需要解决重要的局限性。我们旨在概述SCD的AI预测模型的当前最新图案,重点介绍这些模型在临床实践中的机会,并确定阻碍广泛采用的关键挑战。
Vector Institute)、Vijay Janapa Reddi(哈佛大学)、G Anthony Reina(在英特尔任职期间做出贡献)、
现实世界的传感处理应用需要紧凑、低延迟和低功耗的计算系统。混合忆阻器-互补金属氧化物半导体神经形态架构凭借其内存事件驱动计算能力,为此类任务提供了理想的硬件基础。为了展示此类系统的全部潜力,我们提出并通过实验演示了一种用于现实世界对象定位应用的端到端传感处理解决方案。从仓鸮的神经解剖学中汲取灵感,我们开发了一种生物启发的事件驱动对象定位系统,将最先进的压电微机械超声换能器传感器与基于神经形态电阻式存储器的计算图结合在一起。我们展示了由基于电阻式存储器的巧合检测器、延迟线电路和全定制超声传感器组成的制造系统的测量结果。我们使用这些实验结果来校准我们的系统级模拟。然后使用这些模拟来估计对象定位模型的角度分辨率和能量效率。结果揭示了我们的方法的潜力,经评估,其能量效率比执行相同任务的微控制器高出几个数量级。
两端施加相反自旋极化的有限长度铁磁链是最简单的受挫自旋模型之一。在干净的经典极限中,由于边界条件而插入的畴壁以相等的概率存在于任何一个键上,并且简并度恰好等于键数。如果通过横向场引入量子力学,畴壁将表现为盒子中的粒子,并且更倾向于靠近链的中间而不是两端。因此,真实量子退火器的一个简单特征是这些极限中的哪一个在实践中实现。在这里,我们使用具有反平行边界自旋的铁磁链来测试真实通量量子比特量子退火器,并发现与两个预期相反,由于存在有效随机纵向场,发现的畴壁分布不均匀,尽管在量子比特之间的耦合名义上为零时进行了调整以将这些场归零。我们对畴壁分布函数的形式进行了简单的推导,并展示了我们发现的效应如何用于确定表征退火器的有效随机场(噪声)的强度。以这种方式测量的噪声小于单量子比特调谐过程中看到的噪声,但仍然会定性地影响退火器执行的模拟结果。
人类来源的功能。简短答案问题: - (答案全部)[23x2 = 46] 1。用示例定义免费的威尔逊分析。2。编写QSAR的应用程序。3。招募两个ADME数据库。4。提及两个生化数据库。5。用示例定义铅分子。6。定义铅优化的随机筛选。7。定义COMFA和COMSIA。8。写药数据库的应用程序。9。提及任何两种铅优化技术。10。用示例定义生物膜。11。解释Hansch分析。12。比较SAR和QSAR。13。定义comsia及其两个应用程序。14。解释5.15。蛋白质加工用于自动库克维纳中的对接。16。招募任何两个药物数据库。17。绑定位点如何位于PDB和Discovery Studio Visualizer18。电网盒的重要性19。对接化合物的虚拟筛选。20。BLAST和基因本体论发现。21。多序列比对和蛋白质功能评估22。同源建模和模型使用者的使用。23。半经验方法和能量最小化。
摘要 目的:本文回顾了现有的定性研究文献,这些文献涉及人们使用辅助和替代沟通 (AAC) 进行交流的经验。进行这次回顾的目的是更多地了解人们使用 AAC 进行交流时所重视的价值观和结果。进行这次回顾是为了更深入地了解这些经验,为制定患者报告结果测量 (PROM) 提供参考。材料和方法:对现有的定性研究文献进行定性证据综合,以探索和评估有关使用 AAC 的人的经验的当前知识。结果:从 115 份定性研究报告中,确定了 19 篇论文直接回答了研究问题和回顾的目的。确定了可以在由价值观、结果和背景结构组成的先验框架内组织的数据。结论:这次回顾使人们对需要 AAC 的人的经历有了更深入的分析理解。结果表明,一组概念可用于指导 PROM 的开发。 PROM 可用于帮助临床医生和研究人员更好地了解需要 AAC 的人的观点并评估干预措施。结果还鼓励专业人员重新考虑与需要 AAC 的人一起工作时使用的术语和方法,并反思影响人们沟通体验的多维因素。
计算机视觉的抽象工业应用有时需要检测数字图像中小组像素的非典型物体。这些对象很难单一单,因为它们很小并且随机分布。在这项工作中,我们使用新型基于ANT系统的聚类算法(ASCA)提出了一种图像分割方法。ASCA对蚂蚁的觅食行为进行建模,蚂蚁的觅食行为在搜索高数据密度区域的数据空间中移动,并在其路径上留下信息素跟踪。信息素图用于识别簇的确切数量,并使用信息素gra-denient将像素分配给这些簇。我们将ASCA应用于数字乳房X线照片中的微钙化,并将其与最先进的聚类算法进行比较,例如1D自组织图,k -meanss,模糊C-Meanss和可能的模糊模糊C-Meanss。ASCA的主要优点是,群集的数量不需要先验。实验结果表明,在检测非典型数据的小簇时,ASCA比其他算法更有效。
需要开发适应不断变化的生产情景的植物品种,特别是在气候变化的情况下,这要求作物满足日益复杂和多样化的需求,这对育种者来说是一个巨大的挑战。在此背景下,追求赋予所需作物特性和适应性的性状组合比以往任何时候都更加重要,因此有必要加强多标准或多性状育种(Moeinizade 等人,2020 年)。利用分布在基因组中的完整核苷酸多样性来预测数量性状的育种值(基因组预测,GP,Meuwissen 等人,2001 年)已证明其在育种计划中的有效性。事实证明,这种方法有助于提高遗传增益率并降低成本(Hickey 等人,2017 年)。然而,为了应对气候变化和更明确的环境目标种群(Chapman 等人,2000 年),对多环境(ME)育种的需求日益增长,这需要采用基因组预测方法来解释基因型和环境(GxE)之间相互作用的出现(Rincent 等人,2017 年)。先前的研究试图在基因组选择(GS)中解决 GxE。例如,Burgueño 等人(2012) 开发了多环境统计模型。然而,这些模型仅考虑线性和非因果环境效应,从而降低了预测准确性的可能增益,尤其是对于复杂的综合性状或与校准集有显着差异的环境(Rogers and Holland,2022)。Heslot 等人。另一方面,(2014 年)使用作物生长模型 (CGM) 来推导环境协变量。与标准 GS 模型相比,在 GS 框架内加入环境协变量可提高预测准确性并降低未观察环境中的预测变异性。整合作物模型以解决 GxE,如 Heslot 等人的研究所示。(2014) ,强调了这种方法在所述育种环境中的实用性。尽管如此,考虑大量协变量会显著增加问题的复杂性,使得建模变得极具挑战性(Larkin 等人,2019 年)。
