上个世纪,科技发展取得了巨大进步,为现代人类文明的进步奠定了基础。然而不幸的是,这种进步也带来了一些不想要的严重问题,这些问题有可能破坏维持生命的环境。现在,公众真正渴望并意识到要寻找替代的自然能源系统和产品,以帮助改变导致这一困境的现有能源使用模式。1992 年在里约和 2002 年在约翰内斯堡举行的联合国会议将环境可持续性问题推到了国际舞台的最前沿。随后,该组织确定了建筑物应努力实现的目标,以获得绿色建筑的认可,其中包括提高可靠性、提高室内空气质量、减少自然资源使用、在建筑物使用寿命内大幅降低能源成本、通过提高建筑能源效率来提高舒适度以及通过增加建筑能源改进活动来增加就业率。从理论上讲,这些好处可以抵消任何类型的建筑成本增加(通常为 3-5%),而改进将对生命周期成本产生直接的积极影响。本章试图通过更多地使用环保风力通风来推动可持续生活事业,提高人类生存的质量和舒适度。本文提供的大部分材料均基于作者在澳大利亚新南威尔士大学机械工程学院进行的实验和数值计算工作,特别关注高效风力旋转通风机的开发和生产,供家庭和工业使用。
项目“全电动船只的电池消防安全通风”是先前项目“电灯”的后续项目,这都是在瑞典运输管理局的行业计划可持续运输中进行的。该项目的目的是为国际航行的全电动RO-Pax船(滚动/滚动乘客船)制定通风概念和火灾后策略。该项目旨在考虑使用热失控方案的管理通风系统概念的设计指南。它还试图根据不同的火灾抑制和通风概念来改变通风率的策略。此外,该项目旨在制定清除可能包含易燃气体并从船底甲板中电池室中损坏的电池的策略。该项目承认,有关电池安装和机船安全性的法规仍在开发中。分类社会,例如DNV,Bureau Veritas和Lloyd的登记册正在研究规则和建议,但目前它们本质上是非常主观和定性的。该项目旨在改善定量定义,要求和程序,以进一步增强现有法规和未来法规。
LVRA 流程从对实验室及其 ECD 进行物理检查开始。实验室调查的主要任务包括:记录和记录主要过程、当前化学品库存的一般类型和数量以及它们在空气中产生的潜力。活动和过程在两个主要环境中记录 - 在 ECD 本身内,以及在 ECD 外部(但在实验室环境内),例如(但不限于)台式环境。大多数调查预计每个空间需要 10 到 30 分钟;但是,时间长度在很大程度上取决于每个设施独有的几个因素。
表 12 - 生命周期成本的数据属性表.................................................................. 27 表 13 - ASHRAE 模型的敏感性分析.............................................................. 28 表 14 - FEMP 模型通过改变变量的敏感性........................................................ 31 表 15 - 来自样本和真实医院的高压交流电成本数据.................................................... 37 表 16 - 真实医院高压交流电的 NPV 生命周期成本......................................................... 38 表 17 - 高压交流电数据元素的重要性......................................................................... 45 • 表 18:3 层医院的 LCC - ASHRAE 10% 折扣率............................................. 56 表 19:6 层医院的 LCC - ASHRAE 10% 折扣率............................................. 56 表 20:6 层医院的 LCC - ASHRAE 10% 折扣率......................................... 57 表21:3 层医院的 LCC - ASHRAE 3% 折扣率.................... 57 表 22:6 层医院的 LCC - ASHRAE 3% 折扣率....... .. .......... 58 •
(36 .2 m 2 ) 车辆面积和 260 ft2 (24.2 m 2 ) 天花板集气室(见图 J)。天花板集气室后来被拆除以进行纵向射流风扇测试,分为供气和排气部分,其面积沿隧道长度呈线性变化。供气出口位于路面附近,而排气入口位于隧道天花板。为测试计划对隧道进行的修改包括在北面和南面风扇室安装新的中央风扇装置(见图 2)。每个风扇室安装了三台 300 马力 (224 kW) 完全可逆轴流风扇,配有外部冷却装置。每个风扇能够以 5.2 英寸水压表 (1294 Pa) 的速度移动 200,000 cfm (94.4 m 3 /s),额定可承受高达 600°F (3 l 6°C) 的温度,并且具有可调频率驱动器,能够在 120 和 1200 rpm 之间改变风扇速度。这些风扇将用于完全和部分横向通风测试。在现有的天花板静压箱中安装了中间隧道隔板,以实现双区通风。此外,在分隔天花板静压箱的供应和排气部分的墙上开了洞,以允许在没有那堵墙的情况下出现的气流模式。横向测试完成后,拆除天花板静压箱并安装喷射风扇。24 台 75 马力 (56 千瓦) 轴流喷射风扇以三台为一组,等距悬挂在隧道天花板上。每台风扇可移动 91,000 立方英尺 (43.0 立方米/秒) :
作为正压系统,SmartVent Positive 可从屋顶空腔吸入新鲜空气并进行过滤,然后根据需要通过天花板扩散器网络将洁净空气分配到您的家中和周围。如果季节性附加选项是 SmartVent Positive 通风系统的一部分,也可以从外部获取空气。无论选择哪种空气源选项,产生的空气运动都会将导致冷凝、霉菌和霉变的潮湿、陈腐空气排出您的家中,为您提供更好的空气,打造更健康的家居。
人们一直在争论二氧化碳 (CO 2 ) 和挥发性有机化合物 (VOC) 对人们的健康、幸福感和认知能力的影响。飞机客舱的室内环境具有独特的特点,乘客会接触到外部空气和循环空气的混合。这些特点包括乘客密度高、无法离开环境、相对湿度低以及需要增压。ComAir 研究由欧盟清洁天空 2 计划资助,旨在调查减少室外空气摄入量对客舱空气质量和乘客幸福感的影响。该研究的主要实验采用 2(“占用率”)X 4(“空气通风状况”)析因设计,对参与者进行分层随机化。占用率表示飞机上的人数(半机与满机),并改变心理上重要的幸福感因素空间关系。四种空气通风模式级别为:人均典型飞机气流模式的基线、ASHRAE 161 要求(标准建议)、ASHRAE 161 一半(推荐流量的一半)和目标 CO 2 浓度接近监管限值的再循环模式。本文介绍了 ComAir 的背景和实验程序,并给出了基线空气通风模式下环境条件和受试者福祉和健康的一些初步结果。
摘要。隧道内所有配备智能通风系统的主要和辅助设备都是为了确保安全而设计的。这些系统相互“对话”和“倾听”,决定打开/关闭某些系统或部分系统,并及时通知隧道运营商,隧道运营商有权对所有必要系统进行集中控制。本文使用数值模型来评估可变形元件确保隧道安全运行的效率。使用它们的理念是基于通过柔性元件人为增加隧道的气动阻力,这将阻碍燃烧产物的扩散,但不妨碍人们通过隧道的移动,并有助于隔离干净和污染的气团。这种阻力将用于迅速将隧道车道分成更小的部分,这将有助于在火灾初期尽早扑灭火灾,延长疏散时间并在无法控制的强烈火灾中挽救生命。至于紧凑型可变形元件,它可以用于运营隧道和规划隧道,因为它在实践中不会减少宝贵的地下空间的体积。
BS EN 779:2012 提供了一种检查空调系统中使用的空气过滤器过滤性能的系统。使用 BS EN 779 的修订版本将确保对空调系统中使用的空气过滤器的质量和性能进行更严格的检查。这反过来会改善室内工作环境的空气质量。本标准中使用的测试程序基于数十年来开发的成熟技术,但使用现代数字仪器。空气过滤涉及的多种机制很复杂,难以建模,因此测试技术本身也变得复杂。其结果是,就空气过滤器在去除大气颗粒物空气污染方面的有效性而言,其性能分级无法重复进行。使用人工(合成)颗粒污染的测试用于对这些过滤器进行分级。BS EN 779:2012 测试系统根据空气过滤器的颗粒去除能力对其进行分级(排名)。在过滤器的使用寿命期间,该能力会发生变化,可能会显著增加或减少。本标准的用户需要注意,分类表和其他地方出现的术语“平均效率”是一个测试参数,仅与在人工测试条件下使用人工测试污染进行的测试有关。在测试程序中获得的此参数值与通风系统中空气过滤器的安装性能不对应或直接相关。此值不能用于估计或预测这些过滤器在去除颗粒大气污染方面的有效性。相反,“最低效率”是最低性能标准。在正常工作条件下,过滤器的颗粒去除能力不会低于此值。BSI 专家与 CEN 和 ISO 的专家一起,积极支持 ISO 项目,为用于一般通风的空气过滤器制定新的性能标准。新标准计划于 2015 年发布,并将根据过滤器在去除颗粒物空气污染方面的表现对其进行排名。
呼吸衰竭是一种危重疾病,通常需要机械通气来支持或恢复正常呼吸。虽然有创机械通气 (IMV) 通常用于重症病例,但无创机械通气 (NIMV) 提供了一种侵入性较小的替代方案,可减少并发症,并可用于中度病例。COVID-19 大流行凸显了全球呼吸机短缺的问题,尤其是在中低收入国家 (LMIC),这些国家无法获得救生设备,加剧了危机。为了应对这些挑战,本文提出了一种简化的、基于隔室的 NIMV 模拟模型。该模型提供了一种实用且易于访问的工具,用于模拟各种通气模式下的呼吸系统行为,使用电路和肺生理学之间的类比。通过模拟气道阻力和肺顺应性等关键参数,该模型允许临床医生和研究人员评估呼吸机性能并优化治疗策略。此外,该模拟为开发可在资源受限环境中部署的经济高效、易于使用的 NIMV 系统提供了蓝图。我们的贡献旨在通过更好地设计和理解无创通气来解决呼吸机短缺的问题,最终改善中度呼吸衰竭患者的呼吸护理。