触发转座因子衍生物 1 (TIGD1) 基因是人类独有的,它编码一种蛋白质。该蛋白质的特点是存在三个 pfam 结构域:位于氨基酸 9 和 60 之间的 DNA 结合 HTH 结构域、跨越氨基酸 80–147 的 HTH CenpB 型 DNA 结合结构域,以及从氨基酸 216–403 延伸的 DDE 内切酶结构域 (5)。TIGD1 属于 TIGD 基因家族,其蛋白质与哺乳动物着丝粒蛋白 B (CENP-B) 具有显著的结构和功能特征,并与细胞周期相关蛋白表现出重要的关系 (6)。尽管如此,TIGD1 的确切生物学作用仍在很大程度上未被探索 (7)。先前的研究已经利用生物信息学技术证明了 TIGD1 在癌细胞增殖、侵袭和迁移中潜在的关键作用。有报道称,TIGD1的表达变化在肝癌发生过程中尤为显著,提示其可能参与了肝癌的发生发展(7),且TIGD1在结直肠癌、肺癌、胰腺癌等多种癌症类型中均表现出高表达。值得注意的是,在乳腺癌、肝癌、肺癌和胃癌患者中,TIGD1表达升高与不良疾病结局之间存在相关性(8)。最近的研究表明,TIGD1对免疫反应和化疗反应也有明显的影响。例如,在口腔鳞状细胞癌的研究中,研究者发现TIGD1通过激活IL-17信号通路来调节树突状细胞活性,从而促进口腔鳞状细胞癌的发生和进展。在之前对卵巢癌的研究中,观察到TIGD1对卵巢癌患者对铂类化疗的反应有影响(9)。在他们的研究中,Zou 和同事将生物信息学技术与体外细胞研究相结合,以确定 TIGD1 作为结肠癌的独立预后指标。研究表明,TIGD1 通过触发各种结肠癌信号通路(如 Wnt/B-catenin、E-cadherin、N-cadherin、Bcl-2、BAX、CDK6 和细胞周期蛋白 D1)加速癌细胞从 G1 期向 S 期的转变。这一过程促进癌细胞更平稳地进展,同时抑制细胞凋亡 ( 10 )。此外,另一项研究观察到,TIGD1 可以通过提高铜离子的浓度来潜在地增加结直肠癌细胞中铜毒性引起的细胞死亡 ( 11 )。这些研究表明,TIGD1 作为肿瘤识别标志物和免疫治疗领域的关键靶点具有巨大的潜力。然而,还需要进一步深入研究来确定其具体的临床转化价值。
近年来,已经将用于微生物识别和抗生素易感性测试的自动机器引入了我们医院的微生物学实验室,但是仍然有许多步骤需要手动操作。这项研究的目的是建立一个自动验证系统,用于细菌命名,以改善周转时间(TAT)并减轻临床实验室技术人员的负担。在对微生物的革兰氏染色结果的基本解释之后,应变生长等的出现等,这9个规则是由专门从事微生物学自动验证细菌命名的实验室技术人员制定的。结果表明,在70,044份报告中,自动验证的平均通过率为68.2%,自动验证失败的原因得到了进一步评估。发现,主要原因是鉴定结果与应变外观合理性之间的不一致,呼吸道和尿液中的正常菌群,质谱仪的识别限制等等。细菌命名初步报告的平均TAT为35.2小时,自动验证后31.9小时。总而言之,自动验证后,实验室可以取代近2/3的手动验证和发布报告,将医疗实验室技术人员的日常工作减少约2 h。此外,初步识别报告中的TAT平均减少了3.3小时,这可能会为临床医生提供治疗证据。
推荐(非必需) 脑膜炎球菌 B 疫苗:B 血清群 - Bexsero 第 1 剂日期:__________ 第 2 剂日期:__________ 脑膜炎球菌 B 疫苗:B 血清群 - Trumenba(2 剂或 3 剂计划) 第 1 剂日期:__________ 第 2 剂日期:__________ 第 3 剂日期:__________ 水痘(水痘)疫苗: 第 1 剂日期:__________ 第 2 剂日期:__________ Tdap(破伤风、白喉和百日咳)疫苗(与 DTap 不同): 最后一次 Tdap 剂量日期:__________ Td(破伤风、白喉)疫苗: 最后一次 Td 剂量日期:__________ 甲型肝炎 (Hep A) 疫苗:剂量日期1:__________ 第 2 剂日期:__________ 人乳头瘤 (HPV) 疫苗:制造商名称:______________________ 第 1 剂日期:__________ 第 2 剂日期:__________ 第 3 剂日期:__________ 13 价肺炎球菌疫苗:23 价肺炎球菌疫苗:第 1 剂日期:__________ 第 1 剂日期:__________ TST/PPD(结核菌素试验):日期:__________ 反应:_____ 阴性 _____ 阳性 _____ 硬结 _____mm 胸部 X 光检查:日期:__________ 结果:___________________________________ INH 治疗开始日期:__________ 停止日期:__________ 医疗保健提供者姓名:__________________________________________ 职称: ______________________ 邮票:
实验量子信息处理领域发展迅速,从大约二十年前基本构建模块的演示到如今推动功能信息处理器发展的卓有成效的应用。虽然如今的应用已经进入了传统设备受到挑战的领域,但在有意义的工业或科学问题中展示量子优势仍然是一项悬而未决的任务。这部分是由于系统尺寸相对较小以及门操作的质量。随着在设计越来越大的量子设备方面不断取得进展,人们的关注点已经从原理演示转向能够大规模部署量子机器。设计、方法和设备的可扩展性已成为持续发展的主要考虑因素。在本文中,我们利用基于 40 个 Ca + 离子串的中型设备来解决当今设备的可扩展性挑战,这些离子串被限制在线性 Paul 陷阱中。然而,这里介绍的所有方法都是与硬件无关的,并且可以同样应用于不同的平台。一个关键挑战是,当量子计算机在无法进行传统检查的状态下运行时,如何确保其输出正确。至关重要的是,现有方法在认证系统规模超过少数信息载体(即所谓的量子比特)时会消耗大量资源。另一个关键挑战是开发即使部分量子比特丢失也能保持设备正常运行的概念。本论文报告的第一个实验展示了一种可扩展的表征方法,可以从单一测量设置中获得多量子比特系统的完整断层扫描信息。这是通过扩大底层希尔伯特空间来实现的,并且与系统大小无关。在后处理方面,我们用所谓的“经典阴影”分析的改编版本来补充这种单一设置断层扫描,以比标准方法快几个数量级的方式有效地预测密度矩阵的任意多项式函数。虽然系统表征对于改进设置功能至关重要,但大型设备的缺点是某些问题的计算结果无法再在经典模拟中得到确认。第二个实验基于一种新理论,展示了通过纯经典方法验证量子计算。此外,量子系统无法完全与环境隔离,因此总是容易出错。虽然量子纠错有望克服固有的噪声限制,但现有协议仅限于纠正改变逻辑状态的错误。然而,现实中的量子计算机不仅会遭受此类计算错误,而且以相当的速率,可能会完全丢失存储的信息或信息载体。我们提出了第一个实时纠正量子比特损失的确定性实验。这第三项工作标志着朝着纠错量子信息处理器迈出了重要一步。我们的损失实验还具有按顺序测量和经典前馈的特点,这在现代半经典算法中越来越普遍。虽然这种实验结构越来越容易获得,但它的时间演化可能会偏离幺正性,不再能用标准工具来描述。在第四项工作中,我们
Scope Shaftesbury Capital Plc(此后称为Shaftesbury Capital)聘请了Carbon Footprint Ltd,以验证其碳足迹评估,并在2023年1月1日至2023年1月1日至31日。Shaftesbury Capital负责碳足迹报告中的信息。Carbon Footprint Ltd的责任是为了得出结论,就陈述是否符合GHG协议公司标准。方法论验证是由碳足迹有限公司高级环境顾问Zoe Booth领导的。Carbon Footprint Ltd根据“ ISO 14064第3部分(2019):温室气体:规范及其验证和验证温室气体声明的指南”,完成了审查。进行工作是为了提供有关GHG陈述的有限保证。Carbon Footprint Ltd认为,对评估和相关证据的审查以及随后的报告,为我们的结论提供了合理且公平的基础。以下数据在验证范围内(下面显示了审核后结果):
手稿版本:作者接受的手稿包装中呈现的版本是作者接受的手稿,可能与已发布的版本或记录的版本有所不同。持续的包裹网址:http://wrap.warwick.ac.uk/182959如何引用:有关最新的书目引用信息,请参考发布版本。如果已知已发布的版本,则链接到上面的存储库项目页面将包含有关访问它的详细信息。版权所有和重复使用:沃里克研究档案门户(WARAP)使沃里克大学的研究人员在以下条件下可用开放访问权限。版权所有©以及此处介绍的论文版本的所有道德权利属于单个作者和/或其他版权所有者。在合理且可行的范围内,已在可用的情况下检查了包装中可用的材料是否有资格。未经事先许可或收费,可以将完整项目的副本用于个人研究或研究,教育或非营利目的。前提是作者,标题和完整的书目细节被认为是针对原始元数据页面提供的超链接和/或URL,并且内容不会以任何方式更改。发布者的声明:请参阅“存储库”页面,发布者的语句部分,以获取更多信息。有关更多信息,请通过以下网络与WARP团队联系:wrap@warwick.ac.uk。
- 确认组织边界。- 文档审查,包括对SOP的审查和关键人员的访谈,以确认足够的SOP实施。- 在水电75R相关生产的范围内的供应链中寿命末铝的可追溯性和隔离。- 可以确认最低75%生命终止铝的计算方法的审查是可以实现的。- 查看IT系统的鲁棒性,以计算每种电荷的实际回收含量以上的实际回收含量高于75%。- 对生产费用的点检查,以确认满足可追溯性要求并正确计算。- 对关键人员的访谈。
供应链的弹性吸引了学者和实践者。然而,该主题的复杂性质导致对其关键要素和形成机制的研究不足。为了弥合这一知识差距,我们实施了扎根的理论,并与23名受访者进行了半结构化访谈,从而通过开放编码,轴向编码,选择性编码和理论模型饱和测试来确定供应链弹性的六个关键要素。这些要素是产物供应弹性,资源弹性,合作伙伴的弹性,信息响应的弹性,资本弹性和知识弹性。从关键要素和供应链弹性的三个阶段(准备,响应和恢复)的三个阶段,我们说明了其形成机制,并构建了供应链恢复能力的影响因素和途径的理论模型。我们根据编码结果设计了一份问卷,并用一小部分的问题确认了其合理性和有效性。随后,使用409个问卷的大量样本使用结构方程模型来测试和验证理论模型,表明确定的关键要素对供应链的弹性产生了积极影响。总的来说,我们的论文通过识别其关键要素并详细阐述其形成机制来丰富供应链弹性的预性。
摘要我们引入了一个高级图形框架,用于设计和分析量子误差校正代码,该代码为中心,以我们称为相干奇偶校验检查(CPC)。图形公式基于量子可观察物的ZX -Calculus的示意工具。最终的框架导致了稳定器代码的构造,该框架使我们能够根据经典的框架设计和验证广泛的量子代码,这提供了一种使用分析和数值方法来发现大量代码的方法。我们特别关注较小的代码,这将是近期设备首次使用的代码。我们展示了CSS代码如何形成CPC代码的子集,更一般而言,如何计算CPC代码的稳定器。作为此框架的明确示例,我们提供了一种将几乎所有经典[N,K,3]代码转换为[[2 N -K + 2,K,3]] CPC代码的方法。此外,我们提供了一种简单的机器搜索技术,该技术产生了数千个潜在的代码,并演示了距离3和5代码的操作。最后,我们使用图形工具来说明如何在CPC代码中执行Clifford计算。由于我们的框架提供了一种新的工具,用于构建具有相对较高代码速率的中小型代码,因此它为可能适合新兴设备的代码提供了新的源,而其ZX-钙库基础则可以自然地与图形编译器工具链进行自然误差校正。它还提供了一个有力的框架,用于推理所有尺寸的所有稳定器量子误差校正代码。