摘要:随着对沉浸式体验的需求的增长,显示器的大小和更高的分辨率越来越接近眼睛。但是,缩小像素发射器降低了强度,使其更难感知。电子纸利用环境光进行可见性,无论像素大小如何,都可以保持光学对比度,但无法实现高分辨率。我们显示了由WO 3纳米散件组成的大小至〜560 nm的电气可调节元像素,当显示大小与瞳孔直径匹配时,可以在视网膜上进行一对一的像素 - 示波器映射,我们将其称为视网膜电子纸。我们的技术还支持视频显示(25 Hz),高反射率(〜80%)和光学对比度(〜50%),这将有助于创建最终的虚拟现实显示。主要文本:从电影屏幕和电视到智能手机以及虚拟现实(VR)耳机,显示器逐渐越来越靠近人眼,具有较小的尺寸和更高的分辨率。随着展示技术的进步,出现了一个基本问题:显示大小和分辨率的最终限制是什么?如图1a,为了获得最沉浸和最佳的视觉体验,该显示应与人瞳孔的尺寸紧密匹配,每个像素与视网膜中的光感受器单元相对应。人类视网膜包含约1.2亿光感受器细胞。假设瞳孔直径为8毫米,理想的像素大小为〜650 nm,导致分辨率约为每英寸40,000像素(PPI)。随着像素尺寸收缩,主流发射显示器正在接近其物理极限。这个理论像素大小接近人眼的分辨率极限,代表了显示技术的最终边界,我们将其命名为“视网膜”显示。较小的像素尺寸降低了发射极尺寸,从而导致亮度显着下降,从而使它们越来越难以通过肉眼感知(1,2)。当前,市售的智能手机显示像素通常约为60×60μm²(〜450 ppi),比最终视网膜显示所需的理论尺寸大约10,000倍。已经在这个规模上,肉眼很难感知,尤其是在
最终分析共纳入216个视频,其中健康专业人士上传162个,普通用户上传40个,其余视频由个人科普工作者、盈利组织和新闻机构上传。所有视频的平均DISCERN、JAMA和GQS得分分别为48.87、1.86和2.06。健康专业人士上传的视频在DISCERN得分最高,而个人科普工作者上传的视频在JAMA和GQS得分明显高于其他来源。视频质量与视频特征的相关性分析显示,DISCERN得分、JAMA得分和GQS得分与视频时长呈正相关(P < 0.001),内容得分与评论数(P < 0.05)、分享数(P < 0.001)和视频时长(P < 0.001)呈正相关。
抽象的对比表示学习已被证明是图像和视频的有效自我监督的学习方法。最成功的方法是基于噪声对比估计(NCE),并将实例的不同视图用作阳性,应与其他称为否定的实例形成对比,被称为噪声。但是,数据集中的几个实例是从相同的分布中汲取的,并共享基本的语义信息。良好的数据表示应包含实例之间的关系,语义相似性和差异性,即通过将所有负面因素视为噪声来损害对比学习。为了避免此问题,我们提出了一种新的对比度学习的表述,使用称为“相似性对比估计(SCE)”的实例之间的语义相似性。我们的训练目标是一个软的对比目标,它使阳性更接近,并估计根据其学到的相似性推动或提取负面实例的连续分布。我们在图像和视频表示学习方面均通过经验验证我们的方法。我们表明,SCE在ImageNet线性评估方案上的最低时期时代的较少时代的时期与最低的时期进行了竞争性,并且它概括为几个下游图像任务。我们还表明,SCE达到了预处理视频表示的最新结果,并且学习的表示形式可以推广到下游任务。源代码可用:https://github.com/juliendenize/eztorch。
>> 拉古·斯里尼瓦斯博士(物理学早期职业研究员):大家好,我叫拉古。我是贝利奥尔学院和物理系的早期职业研究员。我在美国攻读博士学位之前在新加坡长大,然后于 2020 年来到牛津。自 22 年以来,我一直在学院工作,教授本科生量子力学课程。我的研究重点是实验量子物理学,即操纵单电荷原子或离子。例如,我们的一个应用是量子计算,我们正在尝试开发新技术来更精确地操纵这些原子以及存储在这些原子中的信息。因此,你可以将它们视为在原子内存储零和一。但它与传统计算机的不同之处在于,它们不仅仅是零和一,而且它们可以在我们所谓的叠加态中同时为零和一。我们还开发了不使用激光来纠缠这些离子的新技术,这是我攻读博士学位期间的研究重点。由于我的研究范围已经扩展到量子计算之外,扩展到量子传感,我们可以使用这些离子作为时钟来测量频率和时间的微小差异,以及更基本的量子光学。所以,要记住的是,我是一个实验主义者。所以,90% 到 99% 的时间里,有些东西坏了,你只需要修复它。但有 1% 的时间,一切都正常,你正在获取数据,这就像魔术一样。
5。在通过VC加入听证会时,顾问/当事方必须编写项目编号 div>及其名称(在登录时的用户名框中),否则可能不允许通过VC加入听证会。
对于希望发表公众评论的公众,一旦会议结束后,在议程上达成了公众评论项目,主持人将允许那些亲自参加公众评论的人首先发表公众评论,然后要求计算机加入的人使用“提高手”的功能,以表明谁希望对公众发表公开评论。那些举手的人将不受欢迎,以发表公众评论。一旦所有有抬高手的人都有机会发表公众评论,通过电话出现的个人将是未经的,并询问他们是否想公开发表评论。请注意,公众意见不打算与董事会进行讨论或问答环节。此外,在公开评论时,请确定自己以及您是单独讲话还是代表组织。除非主持人另有指示,否则所有公众意见都将限制在3分钟。代替会议期间提供公众评论,您可以通过单击此处提交书面公开评论:https://forms.office.com/r/wjx3v2js3w。只有在会议前的最后一个工作日下午5点之前收到的书面公开评论才会提交给董事会成员进行考虑。会议期间不会大声朗读收到的书面评论。
摘要 人工智能 (AI) 已被证明是提高视频监控系统效率、有助于公共安全的关键工具。本系统评价旨在分析人工智能在这一领域的贡献,符合可持续发展目标 16 (SDG 16),即促进和平与包容的社会。我们分析了从 Scopus、WOS、ProQuest、EBSCO、IEEE Xplore 和 Science Direct 等主要数据库中提取的 145 篇文章。使用 PRISMA 方法,应用纳入和排除标准,得到 42 篇与评价相关的文章。研究结果表明,物联网、计算机视觉和边缘计算等先进的人工智能技术的使用与人工智能的结合最为紧密,增强了人工智能在视频监控系统中的功能。在此框架中,深度学习是优化这些应用程序的重要基础。最后,本评价的结果为未来人工智能在视频监控中的应用研究奠定了坚实的基础。所评估的技术有可能进一步促进不同环境和环境下的安全性和运营效率的提高。
生活节奏的加快和短视频的蓬勃发展挤压了在知识传播中扮演重要角色的长视频的生存空间。为了解决这一困境,视频摘要被提出来促进视频观看和知识获取。而人工智能的出现使这一解决方案成为可能。我们认为人工智能生成的视频摘要可能会减少获取信息的努力,但逻辑混乱和信息丢失可能会降低获取的信息质量。基于努力-准确性框架,对信息质量要求不同的用户对有/无人工智能摘要的视频会有不同的反应。因此,我们计划进行实验室实验,探索人工智能摘要是否以及如何增加用户的视频观看意愿。此外,我们还将研究人工智能摘要的使用是否影响知识获取质量。我们希望加深对人工智能视频摘要使用的理解,并提供如何使其有效工作的见解。
摘要 有效评估癌症疼痛需要对构成疼痛体验的所有组成部分进行细致的分析。实施自动疼痛评估 (APA) 方法和计算分析方法,特别关注情感内容,可以促进对疼痛的彻底描述。所提出的方法转向使用语音记录中的自动情感识别以及我们之前开发的用于检查疼痛面部表情的模型。对于训练和验证,我们采用了 EMOVO 数据集,该数据集模拟了六种情绪状态(大六)。由多层感知器组成的神经网络在 181 个韵律特征上进行了训练以对情绪进行分类。为了进行测试,我们使用了从癌症患者收集的访谈数据集并选择了两个案例研究。使用 Eudico Linguistic Annotator (ELAN) 6.7 版进行语音注释和连续面部表情分析(得出疼痛/无痛分类)。情绪分析模型的准确率达到 84%,所有类别的精确度、召回率和 F1 分数指标都令人鼓舞。初步结果表明,人工智能 (AI) 策略可用于从视频记录中连续估计情绪状态,揭示主要的情绪状态,并提供证实相应疼痛评估的能力。尽管存在局限性,但提出的 AI 框架仍表现出整体和实时疼痛评估的潜力,为肿瘤环境中的个性化疼痛管理策略铺平了道路。临床试验注册:NCT04726228。