2.1. 何时我的医疗器械被视为与药品形成一个整体产品?2024 年 5 月修订 ............................................................................................................. 7 2.2. 第 117 条是什么?它对药品意味着什么?2025 年 1 月修订 ............................................................................................................. 8 2.3. 我在 MAA 的哪个阶段需要提交公告机构意见?2024 年 5 月修订 ............................................................................................................................. 9 2.4. 我是否可以提供公告机构意见或 MAH 的 I 类 GSPR 合规声明,得出部分符合 GSPR 的结论?公告机构意见的范围是什么?2025 年 1 月新版 ............................................................................................. 9 2.5. MDR 第 117 条如何影响 MDD 授权的 iDDC?2024 年 5 月修订 ............................................................................................................. 10 2.6.如果在整体 DDC 首次获得营销授权后,器械(或器械部件)发生变化,我是否需要提供由公告机构颁发的(新的或更新的)欧盟符合性声明/符合性证书/公告机构意见?2025 年 1 月修订 ........................................................................................................................... 11 2.7. 在器械(或器械部件)发生变化后,我应如何提交对整体 DDC 营销授权条款的微小更改?2025 年 1 月修订 ........................................................................................................... 13 2.8. 对于与整体药械组合中的药品相关的变更(例如适应症扩大、新规格、新药剂型),我是否需要提供新的/更新的公告机构意见或 MAH 的 GSPR 合规声明?2025 年 1 月修订 ........................................................................................................................... 15 2.9.是否可以提交根据指令(90/385/EEC 或 93/42/EEC)颁发的公告机构证书以遵守第 117 条?2024 年 5 月修订 ......................................... 16 2.10. 公告机构意见或 MAH 的 GSPR 合规声明将如何反映在欧洲公共评估报告(EPAR)中?2025 年 1 月修订 ........................................... 16 2.11. MDR 和第 117 条对 2021 年 5 月 26 日或之后提交的互认程序上的 iDDC 营销授权申请有何影响?2025 年 1 月修订 ........................................................................................................... 17 2.12. MDR 第 117 条的要求是否也适用于在欧盟以外使用的药品申请(第 58 条或 EU-M4all)? 2021 年 6 月修订.......................................................................................................................... 17 2.13. UDI(唯一设备标识符)的要求是否适用于将医疗器械作为组成部分的药品? 2024 年 5 月修订 ................ 17
随着全球范围内抗生素耐药性的增加,细菌感染的标准治疗方法变得越来越无效。由于抗生素的过度使用,耐多药细菌已成为 21 世纪的严重危害和全球主要医疗保健问题。传统的开发新型抗菌药物的方法不足以满足现有的需求,因此正在开发抗菌发现领域的新策略。决明子 (C.fistula) 是豆科植物的一种,天然具有抗菌特性。这种植物用于治疗皮肤病、肝脏问题、结核腺体、呕血、瘙痒、白斑和糖尿病。因此,除抗生素之外的有效抗菌治疗至关重要。这种植物含有多种次级代谢产物,包括单宁、萜类化合物、生物碱、黄酮类化合物和糖苷,它们都具有抗菌特性。萜烯和萜类化合物可有效对抗细菌、真菌、病毒和原生动物。萜烯的作用方式涉及亲脂性化学物质破坏膜。添加甲基以增加贝壳杉烯二萜的亲水性会显著降低其抗菌效果。在这项研究中,对金黄色葡萄球菌和肺炎克雷伯菌的抗菌筛选试验表明,从 C.fistula 的乙酸乙酯提取物中分离出的一种新化学物质比阳性对照具有更宽的抑制区。用这种新化学物质处理后,处理过的培养物的基因组 DNA 图谱保持不变。这种新化学物质抑制了蛋白质合成,导致两种菌株处理过的培养物中的蛋白质含量降低,证实了其杀菌作用。需要进一步进行免疫印迹分析以确认特定的蛋白质。研究一种可降低药物负荷和耐药性风险以及治疗成本的新型三萜类化合物,可以为治疗与糖尿病相关的继发性尿路感染提供有希望的治疗选择。
我们已经看到过去几年对使用机器学习进行化学和生物学,合成生物学和代谢工程的兴趣越来越不例外[1]。本文回顾了工程生物系统时使用的三种主要技术。在第2节中,我们介绍了受监督和半监督的机器学习技术的概述,提供了搜索混杂酶活性的示例。在第3节中,我们讨论了通常基于监督学习的主动和强化学习方法,并在迭代过程中直接获得培训集。这些方法对设计构建测试的合成生物学周期尤其可以修改。在预测酶活性,优化代谢途径和进行重新生物合成的背景下提供了示例。生活系统中的工程信息处理设备是一项长期的合成生物学企业。然而,在机器学习中发现的基本操作的工程设备的问题在很大程度上尚未探索。第4节提出试图在体外和体内构造的尝试,这是所有人工神经网络的基本单元。
目的:芹菜素是一种具有抗肿瘤和抗炎特性的黄酮类化合物,目前正在研究其在治疗肝细胞癌 (HCC) 中的潜力。本研究评估了芹菜素对 SNU-449 HCC 细胞系增殖、侵袭和活力的影响。方法:为了评估芹菜素对 HCC 的抗增殖和抗转移作用,我们在 24、48 和 72 小时进行了 MTT 试验,使用了六种芹菜素浓度(2.5-100 µM)。在确定 48 小时的最低有效浓度后,在该剂量下进行了 SRB、菌落形成和伤口愈合试验。所有结果均以中位数(四分位数间距)表示。结果:MTT 试验确定 72 小时时 5 µM 芹菜素为最低有效剂量。 5 µM 芹菜素和未治疗对照组的吸光度分别为 0.581(IQR:0.26)和 0.67(IQR:0.049)(p>0.05)。SRB 测定显示芹菜素治疗组和对照组之间没有显着差异(0.54 [IQR:0.07] vs. 0.381 [IQR:0.365];p>0.05)。菌落形成测定显示芹菜素治疗组的存活分数略有降低(相对于对照组为 74%)。伤口愈合测定结束时,芹菜素治疗组的伤口面积为 528,366(IQR:691,200)µm²,对照组为 528,861(IQR:523,150)µm²(p>0.05)。芹菜素治疗组和对照组的伤口愈合率相似(59.5 [IQR:36.9]% vs. 59.75 [IQR:15.4]%;p>0.05)。结论:本研究结果表明,芹菜素对肝癌细胞的直接抗增殖和抗转移作用可能有限。进一步研究肿瘤微环境的调节和抗肿瘤免疫反应的诱导可能会提供有价值的见解。关键词:芹菜素、抗转移治疗、抗增殖作用、肝细胞癌、SNU-449 细胞系
动脉、植入式设备(如起搏器或植入式除颤器),或在最极端的情况下移植整个心脏(Aronow,2009)。然而,这些疗法并不能直接修复心脏受损的组织。为此,人们进行了无数次尝试,将干细胞衍生的心肌细胞(CM)直接整合到梗塞的心脏中(Silver 等人,2021),无论是单细胞植入(Lee 等人,2024)还是实验室制造的心脏贴片(Liu 等人,2024)。迄今为止,仍然存在阻碍这些治疗成功的重大挑战,例如细胞保留(Wu 等人,2021 年)、由于干细胞分化不完全而导致的畸胎瘤形成风险(Kawamura 等人,2016 年)或缺乏电生理整合(Gepstein 等人,2010 年;Liao 等人,2010 年)。解决这些问题的一步是持续生成干细胞衍生的成熟 CM,这些 CM 在移植后可以通过连接蛋白电耦合到现有的心脏组织(Roell 等人,2007 年)并对电信号作出反应以控制心跳(Mandel 等人,2012 年)。电信号对于体内心脏组织的发育非常重要(Thomas 等人,2018 年;Hirota 等人,1985 年)。体外电刺激 (ES) 此前已被探索作为心脏细胞成熟和功能的调节剂,特别是在人类诱导多能干细胞衍生的 CM (hiPSC-CM) 中 (Ronaldson-Bouchard 等人,2019 年;Ma 等人,2018 年;Hernández 等人,2018 年)。然而,这些研究的结果并不一致。虽然大多数研究表明,一定量的直接耦合脉动 ES 有利于 CM 成熟,但尚未就最佳刺激参数达成共识,包括刺激信号的频率、幅度和脉冲持续时间 (Dai 等人,2021 年)。虽然大多数已发表的研究都是使用 3 – 6 V/cm 范围内的电场强度进行的(Ruan 等人,2016 年;Crestani 等人,2020 年;Chan 等人,2013 年),但其他研究报告称 ES 低至 2 V/cm(Hirt 等人,2014 年)或高达 9 V/cm(Ronaldson-Bouchard 等人,2018 年)。研究在 ES 信号的频率(Tandon 等人,2011 年)和持续时间(Geng 等人,2018 年;Yoshida 等人,2019 年)以及开始此类刺激的发育时间点(Crestani 等人,2020 年;LaBarge 等人,2019 年)方面也存在显著差异。个别研究可能会同时改变多个参数,例如:电刺激的幅度、脉冲频率、持续时间和发展时间。鉴于其中一些研究(Gabetti 等人,2023 年;Hu 等人,2024 年)报告了多个参数变化的结果,但没有适当的控制,因此很难区分哪些参数对于指导心脏分化至关重要。生物反应器是动态细胞和组织培养容器,用于为体外生长的细胞提供刺激,从而重现静态培养条件下通常找不到的环境线索(Licata 等人,2023 年)。尽管最近开发了生物反应器来向心脏细胞传递电信号,但作者往往未能提供足够的细节来确保工作可以重现(Gabetti 等人,2023 年;Hu 等人,2024 年)。在本研究中,我们提出了一种生物反应器,用于精确、可控的电刺激体外生长在 2D 单层或 3D 球体中的细胞。该生物反应器设计用于低剪切流体混合,以增强营养物质的利用率,同时还允许在整个实验期间使用
建立了由8个组蛋白乙酰化相关基因组成的STAD预后模型,根据中位风险评分将STAD患者分为高危组和低危组,高危组的预后较低危组差。两组在体细胞突变、免疫亚型、临床病理特征、肿瘤微环境、免疫细胞浸润和免疫活性、免疫治疗预测和药物敏感性等方面存在明显差异。基因本体论(GO)和京都基因与基因组百科全书(KEGG)分析结果表明,两组中的差异表达基因(DEG)参与了与癌症相关的过程和途径。细胞分析表明,DCLK1是胃癌的促癌因子,可促进胃癌细胞对奥沙利铂产生耐药性。
摘要在全球范围内,估计在2000 - 2022年期间避免了21亿疟疾病例和1,170万疟疾死亡。明显地,尽管有效的控制测量值,但在2022年,在85个疟疾 - 流行国家中估计有2.49亿个疟疾病例,与2021年相比增加了500万例。进一步了解人类疟疾的生物学,流行病学和发病机理对于实现疟疾消除至关重要。细胞外囊泡(EV)是膜封闭的纳米颗粒,在细胞间通信中关键,并由所有细胞类型分泌。在这里,我们将回顾有关疟疾中电动汽车的目前所知,从生物发生和货物到病理生理学的分子见解。相关性,蛋白质组学货物的荟萃分析以及体外和体内人类研究之间的比较揭示了患者报道的少数研究的差异。因此,表明需要严格的方法论和过渡到人类感染以阐明其生理作用。我们最后关注诊断和疫苗开发的转化方面,并突出疟疾研究中电动汽车知识的关键差距。
除了常规的口腔卫生习惯外,抗菌漱口水通常用于预防细菌滋生和预防口腔微生物疾病。市售的漱口水主要含有氯己定、酒精和氟化钠等成分,这些成分具有抗菌特性。然而,它们的潜在副作用,如牙齿染色或味觉改变,促使人们需要既有效又副作用更少的新配方 [8,9]。到目前为止,还没有研究检查过氟化物漱口水中精氨酸对牙釉质再矿化的影响。因此,本研究旨在评估 L-精氨酸氟化物漱口水与氟化钠漱口水相比的再矿化潜力。这种方法可以潜在地改善治疗结果,同时保持氟化物在促进牙齿健康方面的益处。这项研究将分阶段进行,这是研究的第一阶段。
摘要:肿瘤是全球最常见的死亡原因之一。欧洲每年新增 370 万例肿瘤病例,超过 190 万患者死亡(WHO 数据)。大多数研究领域都致力于开发新的治疗策略,以有效消除肿瘤、防止其缓解并避免或减少治疗的副作用。过去,通常使用经典的 2D 细胞培养或免疫缺陷动物模型来培养和在人类癌细胞系上测试药物。如今,人们对三维 (3D) 细胞培养的兴趣日益浓厚,这种方法与平面培养细胞有显著不同,既考虑了基因表达,也考虑了细胞间相互作用。各种证据表明,高致瘤性可能取决于小细胞群的出现,据指出,这是转移和复发的原因。这个群体被称为癌症干细胞 (CSC),暗示与正常干细胞有很多相似之处。CSC 是化疗失败以及多药耐药 (MDR) 的主要原因。 CSC 还可以通过细胞因子网络与炎症系统的巨噬细胞等其他细胞相互作用。3D 培养的一大优势是可以分离和研究被其环境包围的 CSC 群体。本文旨在总结已知的 3D 细胞培养,特别是在 CSC 研究领域,因为肿瘤环境对干细胞标志物表达及其发育非常重要。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月25日。 https://doi.org/10.1101/2025.01.24.634800 doi:Biorxiv Preprint