除了进行肾脏移植的ICM012的发展外,胰腺的临床前研究以及其他固体器官以及心脏心脏手术中的心脏移植也正在发展,这是旨在促进临床发育的下一个指示。“他们还支持持续的临床前工作,加上完整的人类ATMIRE研究的有希望的结果,应该能够为未来的I/IIA研究胰腺研究和其他固体器官的移植以及开放性心脏外科手术的核心构成基础。这使我们能够推动我们的新型资产ICM012,这将对减少和预防缺血再灌注损伤产生重大影响”,他继续说。
BRAF基因组改变是小儿低级神经胶质瘤(PLGG)中最常见的致癌驱动因素。ARM 1(n = 77)试验研究了口服,选择性,中枢神经系统 - pentrant,II型RAF抑制剂Tovorafenib(420 mg m -2一次,每周420 mg M -2最高600 mg)对BRAF -ARAF -ARETED -ARETED -ARETED -ARTERED -PLACCED的患者的功效。ARM 2(n = 60)是一个延伸队列,它为ARM 1闭合后的RAF改变PLGG患者提供了治疗。基于独立审查,根据神经肿瘤高级神经胶质瘤(RANO-HGG)标准的响应评估,67%的总响应率(ORR)符合ARM 1 1预定的主要端点;响应持续时间(DOR)为16.6个月;响应时间(TTR)的中位时间为3.0个月(次要终点)。通过小儿神经肿瘤学低级神经胶质瘤(RAPNO)标准和安全性评估评估的其他选择的次要终点包括ORR,DOR和TTR(在所有治疗的患者中评估,ARM 2,ARM 2,n = 137)。根据RAPNO标准(包括次要答复)的ORR为51%; DOR中位数为13.8个月; TTR中位数为5.3个月。最常见的治疗不良事件(TRAES)是头发颜色变化(76%),肌酸磷酸激酶(56%)和贫血(49%)。≥3级Traes发生在42%的患者中。九(7%)患者患有TRAES导致停用Tovorafenib。这些数据表明,Tovorafenib可能是对BRAF的,经过重复/难治性的PLGG的有效疗法。临床。GOV注册:NCT04775485。
先前的研究表明,call体(CC)和心理理论(TOM)能力之间的联系(ACC)之间存在联系,但健康孩子中CC量与Tom之间的关系仍不清楚。本研究检查了CC数量是否影响儿童在评估假装,情感识别和错误信念的理解的TOM任务上的表现。6-12岁的40名儿童接受了结构磁共振成像(MRI)和认知测试电池。我们发现,CC的较大的中部和中央小节与更好的TOM能力显着相关。我们还可以证明年龄和性别相关的影响,因为CC – TOM的关系在年轻(6-8岁)及以上(9-12岁)的儿童以及女性和男性参与者之间。重要的是,年龄较大的孩子驱动了CC中部和中央小节量和TOM能力之间的关联。这项研究是第一个证明CC大小与健康儿童的能力相关的一项研究,强调了CC在其社会认知发展中起着至关重要的作用。CC小节的体积不仅可以作为已知表现出社会认知缺陷的神经发育群体中异质性的量度,而且还可以作为典型发展的儿童的量度。
摘要:测试了单个或有机肥料中两种生物隔离剂的性能,以确定它们对植物生长和植物生长的影响和在正常和不利的领域条件下的影响,例如低pH值和低含量的羊膜菌P. arbuscular mycorrhiza fungi(glomus of Glormus; amf; amf; amf; DSM16656在两年的土壤pH值和可用养分的两年实验中应用于大麦。谷物产量; p,n,k和mg的内容;测量和土壤微生物参数。通过矿物肥料,有机肥料,AMF和K. radicincitans的施用,谷物产量和养分的含量显着增加,以及在正常生长条件下,有机肥料与AMF和K. radicincitans的合并应用在正常生长条件下。在低ph和低P条件下,只有有机肥料与K. radicincitans和AMF的有机肥料合并的合并可以增加对照中大麦的谷物产量和营养成分。
摘要 尽管转基因生物长期以来一直是负面言论的主题,但基因编辑等较新的育种技术可能更受青睐。我们提供了 2018 年 1 月至 2022 年 12 月 5 年的数据,表明在农业生物技术特定内容中,基因编辑在社交和传统英语媒体中的受欢迎程度始终高于转基因生物。我们的情绪分析表明,社交媒体中的受欢迎程度尤其积极,在我们 5 年的分析中,许多月度值都接近 100% 的好感度。因此,我们认为,根据目前的趋势,科学界可以谨慎乐观地认为,基因编辑将被公众接受,并能够实现其对未来全球粮食安全和环境可持续性做出重大贡献的承诺。然而,最近有一些迹象表明,这种下降趋势更为持续,这可能是一个令人担忧的问题。
摘要目的 BRAF 和 NRAS 的基因组变异是恶性黑色素瘤和其他实体瘤的致癌驱动因素。托沃拉非尼是一种在研的口服、选择性、中枢神经系统渗透性、小分子 II 型泛 RAF 抑制剂。这项首次用于人体的 1 期研究探讨了托沃拉非尼的安全性和抗肿瘤活性。方法这项针对复发或难治性晚期实体瘤成年患者的两部分研究包括剂量递增期和剂量扩展期,包括分子定义的黑色素瘤患者群。主要目标是评估每隔一天 (Q2D) 或每周 (QW) 一次给药的托沃拉非尼的安全性,并确定这些方案的最大耐受剂量和推荐的 2 期剂量 (RP2D)。次要目标包括评估抗肿瘤活性和托沃拉非尼药代动力学。结果 149 名患者(Q2D n = 110,QW n = 39)接受了托沃拉非尼治疗。托沃拉非尼的 RP2D 定义为 200 mg Q2D 或 600 mg QW。在剂量扩展阶段,Q2D 队列中的 80 名患者中有 58 名(73%)和 QW 队列中的 19 名患者中有 9 名(47%)出现 ≥ 3 级不良事件。总体而言,最常见的不良事件是贫血(14 名患者,14%)和斑丘疹(8 名患者,8%)。在 Q2D 扩展阶段,68 名可评估患者中有 10 名(15%)出现反应,包括 16 名(50%)未使用过 RAF 和 MEK 抑制剂的 BRAF 突变阳性黑色素瘤患者中的 8 名。在 QW 剂量扩展阶段,17 名可评估的 NRAS 突变阳性黑色素瘤患者未接受过 RAF 和 MEK 抑制剂治疗,未出现反应;9 名患者 (53%) 的最佳反应为病情稳定。400-800 毫克剂量范围内,QW 剂量给药与体循环中托沃拉非尼的最小蓄积相关。结论两种方案的安全性均可接受,未来临床研究首选 RP2D 600 毫克 QW 剂量。托沃拉非尼在 BRAF 突变黑色素瘤中的抗肿瘤活性很有希望,值得在多种环境中继续进行临床开发。ClinicalTrials.gov 标识符 NCT01425008。
BRAF和NRA的抽象目的基因组改变是恶性黑色素瘤和其他实体瘤中的致癌驱动因素。Tovorafenib是一种研究,口服,选择性,CNS-PENETRANT,小分子,II型PAN-RAF抑制剂。这项第一个人类1期研究探讨了Tovorafenib的安全性和抗肿瘤活性。方法对复发或难治性晚期实体瘤的成年患者进行了两部分研究,包括剂量升级阶段和剂量扩张阶段,包括分子定义的黑色素瘤患者。主要目标是每隔一天(Q2D)或每周一次(QW)评估一次Tovorafenib的安全性,并在这些时间表上确定最大耐受性和建议的2阶段剂量(RP2D)。次要目标包括评估抗肿瘤活性和Tovorafenib药代动力学。对149例患者进行了tovorafenib的结果(Q2d n = 110,QW n = 39)。Tovorafenib的RP2D定义为200 mg Q2d或600 mg QW。在剂量扩张阶段,Q2D队列中的80名患者中有58例(73%),QW队列中的19名患者中有9名(47%)发生≥3级不良事件。这些总体中最常见的是贫血(14例,14%)和丘疹性皮疹(8例患者,8%)。在Q2D扩张阶段的68名可评估患者中,有10例(15%)在16例(50%)BRAF突变阳性黑色素瘤中的16例患者中有10例(15%)的反应,其中包括RAF和MEK抑制剂。在QW剂量扩张阶段,NRAS突变阳性黑色素瘤对RAF和MEK抑制剂的可评估患者没有反应。 9名患者(53%)对稳定疾病的反应最佳。QW剂量给药与Tovorafenib在400-800 mg的全身循环中的最小积累有关。结论两种时间表的安全性均可接受,QW以600 mg QW的RP2D剂量为将来的临床研究首选。Tovorafenib在BRAF突变的黑色素瘤中的抗肿瘤活性是有希望的,并且在多种环境中持续临床发育是合理的。clinicaltrials.gov标识符NCT01425008。
1。Hutchinson Ke等。Clin Cancer Res。 2013; 19(24):6696-6702。 2。 Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Clin Cancer Res。2013; 19(24):6696-6702。 2。 Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2013; 19(24):6696-6702。2。Botton,T。等。 CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Botton,T。等。CellRep。2019; 29(3):573-588。 3。 Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。CellRep。2019; 29(3):573-588。3。Sun Y等。 Neuro oncol。 2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Sun Y等。Neuro oncol。2017; 19(6):774-785。 4。 Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2017; 19(6):774-785。4。Olszanski等。 Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Olszanski等。Ann Oncol。 2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Ann Oncol。2017; 28(Suppl_5):Abstr。 4583。 5。 Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。2017; 28(Suppl_5):Abstr。4583。5。Kilburn L等。 Neuro oncol。 2022; 24(suppl_7):vii89并介绍了海报。 6。 Wright K等。 Neuro oncol。 2020; 22(增刊2):II46和相关的演示。 7。 提供K等。 海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。Kilburn L等。Neuro oncol。2022; 24(suppl_7):vii89并介绍了海报。6。Wright K等。Neuro oncol。2020; 22(增刊2):II46和相关的演示。7。提供K等。海报P250发表于:2021年结缔组织肿瘤学会年会; 2021年11月10日至13日;虚拟会议。
1生物学,真菌学,病理学和生物标志物实验室(LR16ES05),突尼斯科学学院,突尼斯大学,突尼斯大学,突尼斯大学,突尼斯,2 precision医学/个性化医学/个性化医学/个性化医学和肿瘤学研究实验室(LR21SP01),TUNIS,TUNIS99,TUNIS99突尼斯,突尼斯大学,埃尔·马纳尔,突尼斯,突尼斯,4医学系,血液学 - 肿瘤学系,纽约,纽约,美国,美国,美国,生物分子,毒液和Theranotic应用程序5实验室(LR20IPT01)突尼斯,突尼斯大学7教职员工,突尼斯大学,埃尔·马纳尔,突尼斯,突尼斯,突尼斯,8生物化学实验室,拉拉伯塔医院,突尼斯,突尼斯,突尼斯,9,外科肿瘤学系,萨拉赫·阿齐兹研究所,突尼斯,突尼斯,突尼斯,突尼斯,突尼斯,突尼斯,10次,传播和免疫学的实验室 - LINIS INSTERION -LINIS INTERIS INTIST02 TUNIS 02,TUNIS 02,TINIS 02马纳尔(Manar
摘要 新大陆螺旋蝇,Cochliomyia hominivorax(丽蝇科),是美国最重要的蝇蛆病致病物种。螺旋蝇蝇蛆病是一种人畜共患病,可导致家畜、驯养和野生动物严重病变,偶尔也会在人类身上发生。除了与该物种相关的卫生问题外,这些感染还会对经济部门产生负面影响,例如养牛业。在这里,我们展示了 C. hominivorax 基因组的染色体级组装,该基因组由 6 条染色体长度和 515 个未放置的支架组成,跨度为 534 Mb。果蝇连锁群 A-E 与染色体级支架之间存在明显的对应关系。染色体商 (CQ) 分析确定了来自 X 染色体的单个支架,该支架包含果蝇第四染色体(连锁群 F 或点染色体)上基因的大多数直系同源物。CQ 分析还确定了潜在的 X 和 Y 未放置支架和基因。通过 PCR 用雄性和雌性 DNA 确认了选定区域的 Y 连锁。一些长染色体级支架包括 Y 连锁序列,表明这些区域组装错误。这些资源将为未来旨在了解这种毁灭性专性寄生虫的生物学和进化的研究提供基础。关键词:Cochliomyia hominivorax、HiC 基因组、染色体组装、丽蝇科、外寄生虫