a)应向其通信的作者:ll886@cornell.edu摘要用于毫米波电源应用,GAN高电子移动晶体管(HEMTS)通常在高纯度半胰岛的C轴c-轴4H-SIC 4H-SIC substrate上表现出现。对于这些各向异性六边形材料,微带和共浮标互连的设计和建模都需要详细了解普通介电常数ε⊥和非凡的介电常数ε||分别垂直于c轴。但是,常规的介电特性技术使得很难测量ε||单独或分开ε||来自ε⊥。结果,ε||几乎没有数据,特别是在毫米波频率下。这项工作演示了表征ε||的技术使用底物集成的波导(SIWS)或SIW谐振器的4H SIC。测得的ε||从110 GHz到170 GHz的七个SIW和11个谐振器中,在10.2的±1%以内。因为可以将SIW和谐振器与Hemts和其他设备一起在相同的SIC基板上制造,因此可以在磁力上方便地测量它们,以进行精确的材料磁盘相关性。这种介电常数技术可以扩展到其他频率,材料和方向。高纯度半胰岛六轴六边形4H SIC 1通常用作通过微带传输线(微一起)或接地的Coplanar saveguides(GCPWS)相互连接的毫米波GAN高电动型晶体管(HEMTS)的底物。1)。尽管“静态”ε⊥和ε||这需要精确了解SIC在毫米波频率下的电渗透率,以准确预测沿传输线的波浪的传播延迟和衰减。例如,在微带或GCPW上行进的准电磁(准TEM)波由普通介电常数ε⊥和非凡的介电常数ε||控制。分别垂直和平行于C轴(图
电偶极子源已在集成光子学作为紧凑的电磁源中使用了几年,因为它们有效地耦合了光子引导模式[1,2]。最近通过利用了不同evaneScent波浪的建设性或破坏性干扰,最近证明了圆形极化电偶极子的近场方向性。[3,4]将介电或等离子波导耦合到这些圆形或椭圆形偶极子可以导致波导模式的定向激发,这是集成光子结构的有趣特征。然而,这些椭圆形电偶极子的近场仍然表现出反转对称性,如果偶极子位于倒置对称光子结构的中心,则可以去除方向性。为了恢复两个侧之间的对比属性,我们利用了平等时间对称耦合的波导的独特特性。奇偶校验时间(PT)对称性可以通过使用折射率的假想部分的平衡曲线在耦合的波导中实现,例如一种由增益材料制成的波导,另一个波导具有相等的损失。[5]这些结构的唯一性源于它们可以根据增益/损耗参数γ的值进行操作的两个方案,这些γ定义了波导中折射率的绝对想象部分。这两个方案之间的过渡发生在特殊点(EP),该点位于一定的γ值,取决于结构几何形状。在PT-对称状态(γ<γEP)中,结构的两个超模型都没有任何收益或损失,而在Pt-Orkent Orkent Orgime(γ>γEP)中,一个超级模式受益于增益和幅度爆炸,而其他经验的损失和实用型则减少。
制定白皮书和测试计划,用于定义 PIC 技术 (TID、DD、SEE) 中潜在的辐射诱发故障机制 完成 Freedom Photonics PIC TID 和 DD 测试 (使用 50 MeV 质子进行高通量测试) 与 Georgia Tech 合作完成集成硅波导重离子测试。计划测试 GT SiN 波导和分立硅光子器件 (MZM) 计划在商用分立和集成光子器件 (UCSB、NeoPhotonics 等) 调查中进行额外的 TID 和 DD 质子测试 使用 Lumerical 物理建模和贝叶斯分析来分析 PIC 辐射数据的趋势。
摘要 - 高增益和量子限制噪声的放大是一个困难的问题。使用具有高动力学电感的超导传输线的参数放大不仅是解决此问题的一种有前途的技术,而且还增加了一些好处。与其他技术相比,它们具有改善功率饱和度,实现较大的分数带宽并以较高频率运行的潜力。在这种类型的放大器中,选择适当的传输线是其设计中的关键元素。鉴于当前的制造局限性,传统的线路(例如Coplanar WaveGuides(CPW))并不理想,因为很难使它们具有适当的特征阻抗,以使其具有良好的匹配和足够慢的相位速度,以使其更加紧凑。电容载荷线,也称为人造线,是解决此问题的良好解决方案。但是,很少提出设计规则或模型来指导其准确的设计。考虑到它们通常是以Floquet线的形式制造的,这一事实更加重要,必须仔细设计以抑制参数过程中出现的不希望的谐波。在本文中,我们首先提出了一种新的建模策略,基于电磁仿真软件的使用,其次是一种促进和加快CPW人造线和由其制成的Floquet线的设计的第一原理模型。然后,我们与实验结果进行了比较,以证明其准确性。最后,理论模型允许人们预测人造线的高频行为,表明它们是实现100 GHz以上参数放大器的良好候选者。
• 衍射光学(衍射光学元件的设计、仿真和制造、应用); • 平面光学结构(波导、光子晶体、共振结构、布拉格光栅); • 高光谱系统(光学方案、色散元件、光谱滤波器); • 纳米光子学(纳米光子学元件的设计、仿真和制造、等离子体、超表面); • 光学传感系统、信息传输和处理(光学计算、光学成像系统建模、光学神经网络、光纤、自由空间中的信息传输); • 奇异光学(光学涡旋的产生和记录、光学涡旋的传播和聚焦、圆柱矢量光束、自旋轨道转换)。 第 2 节“地球遥感中的信息技术”
生物相容性的光学设备是突破性照明,成像和生物医学传感技术。尽管在丝绸,纤维素和基于水凝胶的光学元件方面取得了值得注意的发展,但此类方法依赖于昂贵的Precursors和复杂的制造。因此,从红藻中提取的琼脂作为可食用,低成本和可再生材料的可生物降解替代品出现。本文概述了基于琼脂的光学设备的最新图案。首先,我们重新审视该植物胶体的基本面,并强调其具有吸引力的机械,光学和电气特征。随后,我们总结了可用的琼脂元素,平板波导和光纤维。最后,我们通过为未来的发展和应用程序设想机会来解决他们的优势和挑战。
Brillouin光学机电硅光子学电路Brillouin散射是一种非线性光学现象,基于光与结构的机械模式之间的相互作用。Brillouin散射允许生成新的光学频率,并且对于产生超稳定的微波信号或Opto-Microwave转换而引起了极大的兴趣。光力学或光学模式与机械模式之间的耦合最近在硅光子学界中引起了很多关注,其想法是受益于高容量和低成本制造技术[1-4]。然而,在硅光子学中常用的硅在绝缘子指南中自然没有机械模式的良好限制,而锗则可以同时提供良好的光学和机械模式限制[5]。在近年来,在我们的小组中,与Politecnico di Milano合作,在我们的小组中已经开发了GE-GE-GE-GE-GE-Chige Photonics。第一件作品主要针对接近IR范围的电流设备,利用GE量子井结构[6]。最近证明,可以在MID-IR的大波长范围内使用分级的索引sige波导,并且已经获得了包括MACH ZEHNDER干涉仪或集成谐振器的大量无源建筑集团[7]。然后,基于Sige波导的非线性光学效应[8]的芯片上大带宽光源的演示,而光电设备(调制器和光电探测器)的实现最近完成了PhotoNics平台[9]。研究活动将包括:在这种情况下,这项工作的目的是研究硅胶结构的锗,这似乎有望同时限制光学和机械模式。在这种情况下,博士学位项目的目标是研究和开发布里鲁因光学机械的新型平台,依靠Sige Waveguides对Si底物进行。将采用不同的策略来实现同时的机械和光学限制,并根据研究发现将开发创新的设备。
11 ECE3003 Microprocessor Programming and Interfacing 3 0 2 4 12 ECE3004 Electromagnetic Theory 3 0 0 3 13 ECE3005 Analog Communication 3 0 2 4 14 ECE3007 Control Systems (Only for 2020 and 2021 ) 4 0 0 4 15 ECE3008 VLSI Design 3 0 2 4 16 ECE3009 Transmission Lines and Waveguides 3 0 0 3 17 ECE3010 Measuring Instruments and Sensors (for 2020 batch only) 3 0 2 4 18 ECE3011 Digital Communication 3 0 2 4 19 ECE3012 Information Theory and Coding 3 0 0 3 20 ECE3014 Microcontroller Applications 3 0 2 4 21 ECE3016 Electronic Controlled Converters 3 0 0 3 22 ECE3017 Linear Algebra for Communication Engineering 3 0 0 3 23 ECE3018 Engineering Applications using Software Tools 3 0 0 3 24 ECE3019 Python Programming For Electronics Applications 3 0 0 3 25 ECE3020 Computational Intelligence and Machine Learning 3 0 0 3 26 ECE3021 Optoelectronic Materials 3 0 0 3 27 ECE3022 Fundamentals of Photonics 3 0 0 3 28 ECE3023 Wireless Sensor Networks and IOT 3 0 0 3 29 ECE3024 Data Acquisition Techniques 3 0 0 3 30 ECE3025 Artificial Intelligence with Python 3 0 0 3 31 ECE3026 Neural Networks and Deep Learning 3 0 0 3 32 ECE3027 Industrial Automation and Control 3 0 0 3 33 ECE3028 Speech Signal Processing 3 0 0 3 34 ECE3029 Digital Image Processing 3 0 0 3 35 ECE3030 Fuzzy Logic and its Engineering Applications 3 0 0 3 36 ECE3031 Applications of Deep Learning 3 0 0 3 37 ECE3032 Multimedia Signal Processing 3 0 0 3 38 ECE3033 Adaptive Signal Processing 3 0 0 3 39 ECE3034 Bio-Instrumentation Systems 3 0 0 3 40 ECE3035 Biomedical Signal Processing 3 0 0 3 41 ECE3036 Prababilistic System Analysis 3 0 0 3 42 ECE3037 Audio Signal Processing for Music Applications 3 0 0 3 43 ECE3038 Electronic Music Production 3 0 0 3
电阻器 ... 半导体设备 伺服设备,旋转 ..插座、屏蔽和安装垫 插座 屏蔽 安装垫 弹簧 ...标准电子模块 (SEM) 开关 安装 旋转开关 拨动开关 终端 ....每个端子或接线片的电线数量 每个端子的接线片数量· ...连接器触点中的电线数量 变压器、电感器和线圈 电子管: ......波导及相关项目 电线电缆 ...... ~ 电线电缆,内部 内部布线实践 .电线电缆,外部互连 外部布线实践 同轴电缆 (RF) .....-印刷线路 ...... .材料选择 ....材料选择 .. 聚氯乙烯 (PVC) 材料 标准材料 .非标准材料 非标准材料的批准 粘合剂
引言在最近的过去,灵活的电子技术一直引起人们对可折叠和便携式设备中潜在应用的关注[1]。聚乙烯二氟化物(PVDF)表现出最优质的电活性特性,即Piezo,Pyro,铁电性和光电子。因此,PVDF及其共聚物是增加可能有机微电子应用数量的有吸引力的材料,例如电用量传感器,波导,传感器,执行器,执行器,能量收集,电 - 电器记忆,仿生机器人和组织工程[1-5]。PVDF是一种高度极性物质,涉及单元中的碳原子,氢原子的带正电和氟原子的充电。(–CH2-CF2)或CH 2 CF 2)n的重复单元,其中碳 - 氢键与电
