• 显示并标注现有的等高线(带有高程标签),以一到两英尺的等高线为基准,参考海平面基准。• 显示并标注现有的车道入口、临街人行道和无障碍坡道、街道和现场路面材料(例如混凝土、沥青、铺路石、碎石等)、街道路面和通行权宽度、路内停车、街道路缘线、护栏沟、现场建筑、车辆流通车道、私人车道、消防车道、停车区、景观区、围栏、挡土墙以及所有公共和私人雨水/水/废水/其他公用设施基础设施。• 显示、标注和标注所有现有的地役权。• 显示并标注位于通行权内的所有现有标志、公用设施、信号杆、停车收费表、自行车架、报刊亭、广告亭、DART 长椅/庇护所等。• 显示并标注所有溪流、小溪、排水道和百年一遇的洪泛区。除了 FEMA 覆盖外,还显示和标记实际的 100 年水面高程。
概述 5 1.0 定义 6 2.0 设计指南 – 一般信息 7 2.1 基础知识 7 2.2 设计审查顾问 7 2.3 买方责任 7 2.4 市政标准 7 3.0 设计审批流程 7 3.1 初步设计审查(可选) 7 3.2 设计审批 7 3.3 申请修订 8 3.4 建筑许可申请 8 3.5 施工审查 8 3.6 设计审查费用 8 3.7 设计审批提交要求 8 4.0 可持续性指南 9 4.1 可持续性认证 9 4.2 其他可持续性计划 9 5.0 设计指南 10 5.1 场地规划 10 5.1.1 退区/分隔空间 10 5.1.2 选址和场地覆盖率 10 5.1.3 地块分级/地块规划 10 5.2 街景 10 5.2.1 房屋大小、体量和宽度 10 5.2.2 建筑高度和屋顶坡度 10 5.2.3 房屋立面 10 5.2.4 重复 10 5.2.5 角落地段 11 5.2.6 高能见度和步入式地段 11
17。在这里,我们表明使用DNA的理性设计可以大大扩展膜纳米孔的结构和功能范围。我们的设计策略将DNA双链体捆成成孔亚基,它们会模块化形成可调的孔形状和最高数十纳米的管腔宽度。可以选择附加识别或信号的功能单元。通过拨入基本参数,我们使用广泛使用的研究和手持式分析设备通过电直接单分子传感来证明定制毛孔的实用性和潜力。设计师纳米孔说明了DNA纳米技术如何提供功能性生物分子结构,用于合成生物学,单分子酶学和生物物理分析以及便携式诊断和环境筛查。膜毛孔的管腔定义了它们在生物学和技术中的功能。在纳米孔传感中,通道宽度控制单个分子的入口和通过,并影响分析物阻断通道管腔18-
g全球电动运输需要开发电动驱动技术系统的高效和成本效益的解决方案。800-V EV架构的出现标志着改善车辆性能的重要一步。该技术可实现更高的充电能力和更快的充电时间。电池占电动车总成本的取代部分,因此重要的是要尽可能多地使用牵引力的能量并减少损失以增加车辆的范围。提高效率可能涉及对系统的性能要求和设计约束的仔细评估。电动驱动器中的牵引电动机通常由可变的频率驱动器(VFD)提供动力,以启用可变速度操作。电池的直流电压通过逆变器转换为三相交流电。逆变器包含通过合适的脉冲图案为电动机创建所需的正弦波的开关,图1。调节脉冲宽度会改变波浪频率,从而改变电动机速度。
•表2详细介绍了每个GDS层的最小特征大小,最小间隙和最大特征宽度。•表2中列出了每个GDS层的目标临界维度。请注意,其他特征大小可能具有较小的维偏差。•建议至少5μm的波导之间的最小间距,以避免功率耦合。•GDS层之间至少有200 nm的重叠对于解释层之间的一致性公差至关重要。•在GDS第6层中绘制的所有结构(如果是光栅耦合器)必须与GDS第3层(波导)至少重叠200 nm,以说明对齐误差。•GDS层39(加热器丝)和GDS 41(加热器接触板)之间至少有10 µm的重叠,以实现最佳的加热器性能。•确保在GDS第6层中绘制的所有结构(如果是光栅耦合器)不会与GDS层39(加热器丝)或GDS 41(加热器接触板)重叠。
o 可以提供全球或近乎全球的覆盖 o 可以获得长时间序列,但这通常需要跨传感器、平台和程序的重叠,因为单个卫星的寿命有限(至少在设计寿命方面) o 一致的方法应该产生可以在全球范围内应用的测量结果(取决于环境的适用性) o 大量资源可以(必须!)投入到校准/验证中 o 由于开放数据政策和对容量和工具的投资,具有全球共享和使用的潜力 o 可能不支持全套所需的观测,但星座可以通过提供协同作用来提供帮助 o 可以支持常规的全球观测,或者可以针对可观测量(取决于传感器、程序等) o 轨道力学限制了观测的灵活性(对于具有窄带宽度的传感器很重要) o 对于低地球轨道卫星,测量频率可能较低;更高的频率需要更高的轨道或星座 o 可以允许垂直剖面(特别是通过使用主动遥感,或边缘剖面/掩星) 机载
摘要:最近对过渡金属二硫属化物 (TMD) 纳米带的研究促进了这些尺寸受限晶体的受控生长合成策略的发展。我们展示了在由用磷化氢处理的 Si(001) 组成的设计表面上生长的 MoSe 2 纳米带的宽度控制合成。调节载气流中的 H 2 分压可以将纳米带宽度调整到 175 nm 到近 500 nm 之间。实验和模拟表明,H 2 暴露增加了 Si-P 二聚体上氢的表面覆盖率,而 Si-P 二聚体通常是纳米带成核和生长的有利区域。此外,MoSe 2 纳米带表现出异常光致发光蓝移,其幅度为 60 meV,与 MoS 2 纳米带的光发射光谱中报道的幅度相似。这些研究表明,最近开发的纳米带的基底定向生长策略可以扩展到硒化物系列 TMD。此外,它们扩展了制备复杂 TMD 异质结构的合成基础,而这种结构是光学和量子传感器、换能器和处理器所必需的。关键词:过渡金属二硫属化物、纳米带、MoSe 2 、表面、光致发光、激子■ 简介
摘要 - 这篇文章研究了峰值电场强度(PEFIS)和允许的最大激发电压(MEVA)电感链路无线电源传递(WPT)到嵌入人体中的医疗植入物中。在环形,六边形和圆形的几何形状中的分段和未段的天线,宽度为2、1和0.2 mm。广泛的模拟表明,与未分段的天线相比,分割的天线可以显着减少PEFI并增加特定吸收率(SAR)约束内的MEVA。通过分割,PEFI的降低在更高的工作频率下更有效。宽度较小的天线将辐射较小的PEFI。具有相同的天线宽度,六边形天线辐射最大的PEFI,其后是其圆形和环形的对应物。在研究下的所有天线中,宽度为2 mm的未段的六角形天线辐射为最大的PEFI,而宽度为0.2 mm的分段环形天线辐射最小的PEFI。考虑到PEFI和MEVA,首选环形几何形状中的天线,并且应将分割应用于六边形天线。当天线宽度大于1 mm时,建议天线的分割。
如此高度蓝色的SIV发射线提出了有关其起源的审讯。到目前为止,有人建议这些蓝线可能起源于新的基于硅的缺陷[1]。我们认为它们起源于受到强量子电动力效应的SIV中心。为了支持这一主张,我们研究了在SIV发光光谱中观察到的声子侧带。图s1a,我们比较了单个SIV缺陷的室温发射光谱(蓝色曲线),并在k(粉红色曲线,[2]中获取的数据8)中获得的室温(蓝色曲线)[2-7]。引人注目的相似性,并且可以绘制振动模式之间的直接对应关系。根据在实验曲线上执行的分解多洛伦兹拟合,侧带特征位于MEV,MEV,MEV,MEV,MEV,MEV和〜43 〜43 〜75 〜92 〜92 〜92 〜143 〜143 〜156 MEV相对于ZPL(见图。s1b)。频谱显示出与大约166个幅度和宽度相同的模式,但由于应变诱导的变形而在位置移动。
摘要:减小尺寸为可调相变行为提供了合成途径。准备材料作为纳米颗粒会导致临界温度(T C),磁滞宽度以及一阶与二阶相变的“清晰度”引起急剧调制。从融化到超导性的这种尺寸依赖性的化学反应的微观图片仍在争论中。作为一个具有广泛意义的案例研究,我们在金属有机框架(MOF)Fe(1,2,3-3-元素)的纳米晶体中依赖于大小依赖性的自旋跨界(SCO)2,是由金属链键键在较小的颗粒中变得越来越稳定的。与散装材料相比,差量扫描量热法表明最小颗粒中T C和D H的降低约30-40%。可变的振动光谱镜头揭示了长距离结构合作的降低,而X射线衍射效果的热膨胀系数增加了三倍以上。此“声子软化”提供了一种分子机制,用于设计框架材料中尺寸依赖性行为以及理解一般相位变化。