摘要:草莓的产生受到了几种非生物和生物胁迫的挑战,例如干旱,土壤盐度和叶thomonas fragariae引起的角叶斑(ALS)疾病。近几十年来,开发含有不同植物促进(PGP)微生物组合的商业产品一直是农业研究的主要重点之一。然而,根据农作物物种,环境条件以及不同菌株或土著植物菌群之间的竞争,它们的结果通常是不稳定的。使用从特定于农作物的微生物群中选择的有益微生物可能有助于克服这一局限性,从而促进了其可持续农业的局限性。筛选了草莓植物的可培养细菌,以便在体外鉴定PGP活性。细菌分离株在最佳和胁迫(X. fragariae感染或盐度)条件下在草莓植物上进行了测试,从而可以选择假单胞菌的假单胞菌菌株的菌株,促嗜性嗜性嗜性嗜性嗜性菌群和农业杆菌在植物上的生产和植物的生产均高于七个效果(均可提高了七个-F),甚至会增加了七个效果(均可提高效果,甚至可以超出七个。 ALS超过50%。通过协调接种测试了PGP分离株之间潜在的协同作用。然而,与M23和M27单晶型处理相比,通过协调接种,植物的生长和果实质量没有得到促进,除了果实的重量和大小。
柑橘类水果因其营养价值而受到尊敬,面临着诸如柑橘溃疡之类的疾病的显着威胁,尤其是在巴基斯坦影响全球柑橘种植。这项研究深入研究了类似NPR1的基因,水杨酸(SA)的真正受体,在针对Xanthomonas axonopodis PV的防御机理中。citri(XCC)。通过进行全面的全基因组分析和系统发育研究,阐明了柑橘类基因的进化动力学。结构预测揭示了保守的结构域,例如BTB结构域和Ankyrin重复域,对防御机理至关重要。基序分析揭示了必不可少的保守模式,而顺式调节元素表明它们参与转录,生长,对植物激素的反应和压力。主要的细胞质和类似NPR1的基因的核定位强调了其在赋予对各种柑橘种类的耐药性方面的关键作用。对KS/Ka比率的分析表明,纯化NPR1样基因的选择,强调了它们在不同物种中的重要性。同义和染色体图提供了有关柑橘类物种重复事件和直系链接的见解。值得注意的是,XAC感染刺激了NPR1样基因的表达,揭示了它们对致病挑战的反应。有趣的是,XAC感染后QRT-PCR填充揭示了易感和抗柑橘类品种中表达的品种特异性改变。检查防御基因(NPR1)和植物的影响除了遗传因素之外,生理参数,例如过氧化物酶,总可溶性蛋白和二级代谢产物对SA依赖性PR基因的反应,造成植物特征。
摘要:本文致力于研究熔炼的锭、由其轧制的板材以及由此产生的由耐腐蚀316L钢制成的球形粉末,其中添加了0.2wt.%和0.5wt.%的Ag。研究了抗菌性能、微观结构和银浓度分布,并对银含量进行了定性分析。锭的最佳均匀化退火方式为1050 ◦C,持续9小时,从而形成奥氏体组织。结果表明,添加少量银不会影响奥氏体组织的形成,银均匀分布在锭的整个体积中。轧制后的板材也以奥氏体结构为主。银均匀分布在板材的整个体积中。值得注意的是,添加 0.2 wt.% 的银不会影响钢的强度、伸长率和显微硬度,而添加 0.5 wt.% 的银不会显著降低钢的强度,但所有样品均符合 ASTM A240 标准的机械特性。通过 X 射线荧光分析方法确认了耐腐蚀钢样品的定性化学成分。通过能量色散分析法,确定了银在整个粉末颗粒体积上的均匀分布。颗粒呈球形,缺陷数量最少。平板和粉末的抗菌活性研究表明,在添加0.2wt.%和0.5wt.%Ag的2号和3号样品中存在明显的抗菌效果(对野油菜黄单胞菌属细菌、胡萝卜软腐欧文氏菌、边缘假单胞菌、密歇根棒状杆菌)。
摘要:由柑橘黄单胞菌(Xcc)引起的柑橘溃疡病是全球大多数柑橘产区的重要经济病害。Xcc 分泌一种转录激活因子样效应物 (TALE) PthA4,与溃疡病易感基因 LOB1 启动子区的效应物结合元件 (EBE) 结合,激活其表达,从而引起溃疡症状。利用 Cas9/gRNA 编辑 EBE 区域已用于生成抗溃疡病的柑橘植株。然而,生成的大多数 EBE 编辑株系含有 1–2 bp 的插入/缺失,这更有可能通过 PthA4 适应来克服。TALE 的适应能力与与 EBE 的错配数量呈负相关。已知 LbCas12a/crRNA 产生的缺失比 Cas9 更长。在本研究中,我们使用了一种耐高温且更高效的 LbCas12a 变体 (ttLbCas12a),该变体含有单个替换 D156R,用于修改 LOB1 的 EBE 区域。我们首先构建了 GFP-p1380N-ttLbCas12a:LOBP,经证实,该变体在柚子 (Citrus maxima) 叶片中通过 Xcc 促进的农杆菌渗滤而发挥功能。随后,我们在柚子中稳定表达了 ttLbCas12a:LOBP。生成了八个转基因株系,其中七个株系显示 EBE 的 100% 突变,其中一个株系是纯合的。EBE 编辑株系具有高达 10 bp 的 ttLbCas12a 介导的缺失。重要的是,这七个株系具有抗溃疡病性,并且未检测到脱靶。综上所述,ttLbCas12a 可有效利用来生成具有短缺失的双等位基因/纯合柑橘突变系,从而为柑橘的功能研究和育种提供有用的工具。
香蕉(Musa spp.),包括芭蕉,是亚热带和热带地区 140 多个国家种植的主要粮食和经济作物之一,全球年产量约为 1.53 亿吨,养活了约 4 亿人。尽管香蕉种植广泛且适应多种环境,但其生产面临着农业景观中经常共存的病原体和害虫的重大挑战。基于 CRISPR/Cas 的基因编辑的最新进展提供了变革性解决方案,可提高香蕉的恢复力和生产力。肯尼亚国际热带农业研究所的研究人员已成功利用基因编辑赋予香蕉对香蕉枯萎病 (BXW) 等疾病的抗性,方法是针对易感基因,并通过破坏病毒序列来抵抗香蕉条纹病毒 (BSV)。其他突破包括开发半矮化植物和增加 β-胡萝卜素含量。此外,经菲律宾监管部门批准,已开发出不易褐变的香蕉以减少食物浪费。香蕉基因编辑的未来前景一片光明,基于 CRISPR 的基因激活 (CRISPRa) 和抑制 (CRISPRi) 技术有望提高抗病性。Cas-CLOVER 系统为 CRISPR/Cas9 提供了一种精确的替代方法,证明了成功生成了基因编辑的香蕉突变体。精准遗传学与传统育种的结合,以及采用无转基因编辑策略,将是充分发挥基因编辑香蕉潜力的关键。作物基因编辑的未来前景令人振奋,可以生产出在不同的农业生态区茁壮成长、营养价值极高的香蕉,最终使农民和消费者受益。本文强调了 CRISPR/Cas 技术在提高香蕉的抗逆性、产量和营养品质方面的关键作用,对全球粮食安全具有重要意义。
将易感农作物植物植物和耐虫害的茎植物是一种有价值的管理实践,可减少全球植物性寄生虫和植物病原体造成的损害。抗甲酸中的耐药根可广泛用于嫁接番茄,茄子和胡椒作物,以控制多种疾病和线虫。已经开发出耐药的甲壳虫根stocks,用于嫁接西瓜,黄瓜,Luffa和Melon。几种果树种类(包括易感柑橘,苹果和橄榄)被嫁接在耐药的砧木上,尤其是用于管理土壤传播疾病和植物 - 寄生虫线虫。嫁接是土壤熏蒸的一种广泛使用的替代品,也是控制土壤传播疾病和线虫害虫的其他农药。Rootstocks of several crops have been developed with speci fi c resistance(s) to soil-borne diseases and plant-parasitic nematodes, including Verticillium wilt, Fusarium wilt, Fusarium crown and root rots, Southern blight, bacterial wilt, Huanlongbing (HLB), Phytophthora root rot, citrus tristeza virus, citrus Canker(Xanthomonas axonopodis),Meloidogyne Incognita,M。Arenaria,M。Javanica和Apple Repleant疾病(phytophthora,Pythium,Pythium,Cylindrocarpon和Rhizoctonia spp。与根神经线虫相互作用,Pratylenchus渗透性)。南部的根管线虫(M. inognita)易感番茄在线虫 - 耐药根上嫁接可降低根的腐蚀和增加的产量(Kunwar等,2015; Frey等,2020)。Meloidogyne Incognita会导致西瓜中的根,植物发育迟缓和果实产量降低。在耐药根stock上敏感的西红柿易受细菌枯萎病(ralstonia solanacearum)的果实,其果实产量高88%至125%(Sostoff等,2019)。野生西瓜根stocks对南部的根管耐药性具有
巴斯马蒂大米因其风味、香气和长粒而闻名于世。全球对它的需求不断增加,尤其是在亚洲。然而,其生产受到田间各种问题的威胁,导致农作物严重损失。其中一个主要问题是水稻白叶枯病菌 (Xoo) 引起的细菌性枯萎病。Xoo 通过激活易感基因(OsSWEET 家族基因)来劫持宿主机制,利用其内源性转录激活因子样效应物 (TALE)。TALE 在 OsSWEET 基因的启动子区具有效应物结合元件 (EBE)。在 Clade III SWEET 基因中发现的六个著名 TALE 中,有四个存在于 OsSWEET14 基因的启动子区。因此,针对 OsSWEET14 的启动子对于产生广谱抗性非常重要。为了设计出对细菌性枯萎病的抗性,我们通过靶向 OsSWEET14 启动子中存在的 4 个 EBE,在超级巴斯马蒂大米中建立了 CRISPR-Cas9 介导的基因组编辑。我们能够获得四个不同的超级巴斯马蒂品系(SB-E1、SB-E2、SB-E3 和 SB-E4),这些品系具有三个 TALE(AvrXa7、PthXo3 和 TalF)的 EBE。然后通过选择一种带有 AvrXa7 的当地分离的毒性 Xoo 菌株并感染超级巴斯马蒂,对编辑品系进行三次重复的抗细菌性枯萎病评估。AvrXa7 EBE 缺失的品系对 Xoo 菌株表现出抗性。因此,证实了编辑的 EBE 具有对 Xoo 菌株中存在的各自 TALE 的抗性。在这项研究中,获得了高达 9% 的编辑效率。我们的研究结果表明,可以利用 CRISPR-Cas9 来使本土品种对细菌性枯萎病产生抗性,以抵抗当地流行的 Xoo 菌株。
abhishek_official@hotmail.com,mahato.satyajeet1@gmail.com摘要:农业是我们社会最关键的领域之一,自从中世纪以来。作物疾病是对粮食安全的重大威胁,但是由于世界许多地方缺乏设施,因此很难及时检测。细菌和真菌以多种方式感染番茄植物。早期疫病和晚期疫病是两种影响植物的真菌疾病。细菌斑是由四种xanthomonas物种引起的,可以在多于西红柿的任何地方找到。智能手机辅助疾病检测现在是可能的,这要归功于全球智能手机的渗透不断上升,并且通过深度学习使机器视觉的最新发展成为可能。为了区分不同的番茄叶,我们使用了54,306张在受控条件下收集的患病和健康植物叶片图像的公共数据集训练了深度卷积神经网络疾病,并选择了西红柿的图像。对越来越广泛且公共可访问的图像数据集的培训深度学习模型指向技术诊断的直接途径。关键字:早期疫病,晚疫病,细菌斑点,叶片,片状叶斑,靶点点,黄色叶卷病毒,Mosiac病毒,两个斑点的蜘蛛螨1.引言农业是每个文明的基本基础之一。种植蔬菜(如西红柿)在印度各种亚热带气候中有效。一种患病的植物无法达到其正常状态。晚疫病和早期疫病是两种常见的番茄疾病[1]。一种疾病也可以描述为干扰植物的产量并降低其活力。在印度,疾病随季节的变化而受到环境因素的影响。病原体和本季节种植的各种作物在这些疾病中起作用。他们有可能破坏番茄植物和农业土地。可能会发现晚期疫病和植物叶的早期疫病,但是如果手动执行需要很长时间。结果,需要更新的更改。借助图像处理和计算机视觉,有很多方法可以检测对象及其独特的特征。深度学习CNN模型[2]是最常见的方法之一。在我们的情况下,该模型将根据叶子的图片检测疾病。
柑橘溃疡病影响柑橘生产。该病由柑橘黄单胞菌(Xcc)引起。先前的研究证实,在 Xcc 感染期间,转录激活因子样效应物 (TALE) PthA4 会从病原体转移到宿主植物细胞中。PthA4 与溃疡病易感基因 LOB1(EBE PthA4 -LOBP)启动子区中的效应物结合元件 (EBE) 结合,激活其表达,随后引起溃疡症状。之前,采用 Cas12a/CBE 共编辑方法破坏高度纯合的柚子的 EBE PthA4 -LOBP。然而,大多数商业柑橘品种都是杂合杂交种,更难产生纯合/双等位基因突变体。在这里,我们采用 Cas12a/CBE 共编辑方法来编辑 Hamlin(Citrus sinensis)的 EBE PthA4 -LOBP,这是一种在世界范围内种植的商业杂合柑橘品种。构建了二元载体 GFP- p1380N-ttLbCas12a:LOBP1-mPBE:ALS2:ALS1,并证明其可通过 Xcc 促进的农杆菌素过滤在 Hamlin 叶片中发挥作用。该构建体允许通过 GFP 选择无转基因再生体,编辑 ALS 以生成抗氯磺隆再生体作为基因组编辑的选择标记,这是通过 nCas9-mPBE:ALS2:ALS1 瞬时表达 T-DNA 的结果,并通过 ttLbCas12a 编辑感兴趣的基因(即本研究中的 EBE PthA4 -LOBP),从而产生无转基因柑橘。共产生了 77 株幼苗。其中 8 株幼苗为转基因植株(#Ham GFP 1 - #Ham GFP 8),4 株幼苗为非转基因植株(#Ham NoGFP 1 - #Ham NoGFP 4),其余为野生型。在 4 株非转基因幼苗中,三个品系(#Ham NoGFP 1、#Ham NoGFP 2 和 #Ham NoGFP 3)含有 EBE pthA4 的双等位基因突变,一个品系(#Ham NoGFP 4)含有 EBE pthA4 的纯合突变。我们在 C. sinensis cv. Hamlin 中实现了 EBE PthA4 – LOBP 的 5.2% 非转基因纯合/双等位基因突变效率,而之前研究中柚子的突变效率为 1.9%。重要的是,存活下来的 4 株无转基因植株和 3 株转基因植株均能抵抗柑橘
测试的代表性微生物:(部分概要)HyGenesis 系统:细菌 醋酸钙不动杆菌 1 真菌 黑曲霉 基于独特的抗菌技术,可有效控制各种处理物品和基质上的细菌、真菌、藻类 枯草芽孢杆菌 烟曲霉 和酵母。抗菌活性物质是在美国环境保护局和全球类似监管机构注册的猪布鲁氏菌 杂色曲霉 布鲁氏菌 出芽短梗霉 伯克霍尔德菌 洋葱毛壳菌。这种抗菌剂已安全有效地使用了三十多年。产气荚膜梭菌 镰刀菌 鲍氏棒状杆菌 粉红粘帚菌 本表是应众多要求编制的,要求提供该技术有效的微生物清单。我们选择了大肠杆菌 ATCC 23266 白色青霉菌,以提供测试谱,其中大肠杆菌 1 黄青霉菌 代表所有重要类型和猪嗜血杆菌 柑橘青霉菌 微生物种类。流感嗜血杆菌 秀丽隐杆线虫 肺炎克雷伯菌 ATCC 4352 绳状青霉 干酪乳杆菌 腐殖质青霉 乳酸明串珠菌 青霉菌 单核细胞增多性李斯特菌 变异青霉 耐甲氧西林葡萄球菌 金黄色葡萄球菌 黑根霉 微球菌 sp. Stachybotrys atra 耻垢分枝杆菌 黄木霉 结核分枝杆菌 趾间毛癣菌 痤疮丙酸杆菌 须毛癣菌 奇异变形杆菌 藻类 奇异变形杆菌1 鱼腥藻 B-1446-1C 普通变形杆菌 小球藻 铜绿假单胞菌 Gium sp. LB 9c 铜绿假单胞菌 PRD-10 波恩颤菌 LB143 铜绿假单胞菌 1 胸膜球菌属 LB11 洋葱假单胞菌 四尾假单胞菌 细长月牙藻 B-325 猪霍乱沙门氏菌 团藻属 LB 9 伤寒沙门氏菌 酵母菌 金黄色葡萄球菌(无色素)1 白色念珠菌 金黄色葡萄球菌(有色素)1 酿酒酵母 表皮葡萄球菌 1 病毒 粪链球菌 禽流感 变形链球菌 HIV B 万古霉素耐药肠球菌 (VRE) 甲型流感 野油菜黄单胞菌 SARS