摘要 准确识别可从有希望的治疗方法中受益的患者非常困难,这使得证明创伤性脑损伤 (TBI) 新疗法的有效性变得具有挑战性。尽管机器学习越来越多地应用于这项任务,但现有的二元结果预测模型不足以对 TBI 患者进行有效分层。本研究的目的是开发一个准确的三类结果预测模型,以便对患者进行适当的分层。为此,使用自 2018 年 1 月以来日本六家医院收治的 1200 名钝性 TBI 患者(每家机构 200 例连续病例)的回顾性平衡数据进行模型训练和验证。我们纳入了在急诊科获得的 21 个预测因子,包括年龄、性别、六项临床发现、四个实验室参数、八个计算机断层扫描结果和一项紧急开颅手术。我们开发了两种机器学习模型(XGBoost 和密集神经网络)和逻辑回归模型,以根据出院时的格拉斯哥预后量表扩展版 (GOSE) 预测三类结果。使用 n = 1000 的训练数据集开发预测模型,并使用引导法在验证数据集(n = 80)和测试数据集(n = 120)上进行两轮验证,评估其预测性能。在总共 1200 名患者中,患者年龄中位数为 71 岁,199 名(16.7%)患有严重 TBI,104 名患者(8.7%)接受了紧急开颅手术。住院时间中位数为 13.0 天。三级结果为 709 例患者(59.1%)恢复良好/中度残疾,416 例患者(34.7%)严重残疾/植物状态,75 例患者(6.2%)死亡。XGBoost 模型在最终验证中表现良好,灵敏度为 69.5%,准确率为 82.5%,受试者工作特征曲线下面积为 0.901。在受试者工作特征曲线分析方面,XGBoost 略胜于基于神经网络和逻辑回归的模型。特别是,XGBoost
摘要:舌头疾病的诊断是基于对各种舌头特征的观察,包括颜色,形状,质地和水分,这些特征表明患者的健康状况。舌色是一种这样的特征,在识别疾病和疾病进展水平方面起着至关重要的功能。随着计算机视觉系统的发展,尤其是在人工智能领域,在获取,处理和分类舌头图像方面取得了重要进展。本研究提出了一个新的成像系统,以分析和提取不同颜色饱和的舌色特征,并在五种颜色空间模型(RGB,YCBCR,HSV,LAB和YIQ)的不同光条件下。使用六个机器学习算法(即幼稚的贝叶斯(NB),支持向量机(SVM),K-Neareart Neight(KNN),DICKERT(NB),决策树(DTS),森林(DTS),森林(dts),森林(dts),fortive(dts fornes forter(dts forter)(dts),训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。 从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。 基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。 因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。
摘要:由于其固有的优势,例如零污染,灵活性,可持续性和高可靠性,太阳能光伏发电引起了重大的兴趣。确保PV功率设施的有效运行在精确的故障检测中取决于。这不仅可以增强其可靠性和安全性,而且还可以优化利润并避免昂贵的维护。但是,使用通用保护设备的PV系统直流电(DC)侧的故障检测和分类带来了重大挑战。这项研究深入研究了对光伏(PV)阵列中复杂断层的探索和分析,尤其是那些表现出类似I-V曲线的阵列,这是PV故障诊断的重大挑战,在先前的研究中未充分解决。本文探讨了支持向量机(SVM)和极端梯度提升(XGBoost)的设计和实施,重点是它们有效地识别小型PV阵列中各种故障状态的能力。这项研究扩大了将优化算法的使用,特别是蜜蜂算法(BA)和粒子群优化(PSO),目的是提高基本SVM和XGBoost分类器的性能。优化过程涉及完善机器学习模型的超参数,以实现故障分类的卓越精度。发现蜜蜂算法的弹性和效率的有说服力的案例。使用用于优化SVM和XGBOOST分类器以检测PV阵列中的复杂故障时,蜜蜂算法显示出显着的精度。相比之下,使用PSO算法进行细调的分类器表现出相对较低的性能。这些发现强调了蜜蜂算法在光伏系统中故障检测中提高分类器准确性的潜力。
图 1. CUD 患者与健康对照者的 FC 表型。(A)10 倍交叉验证的分类性能:基于 FC 的 XGBoost 模型的准确度、灵敏度和特异性分别为 0.83 ± 0.10、0.80 ± 0.18 和 0.85 ± 0.10。(B)通过计算特征出现在模型所有树中的频率,对 XGBoost 模型识别出的 40 个最具判别性的 FC 特征进行可视化。节点大小表示根据链接的 FC 重要性总和计算出的节点强度。(C)通过基于 Yeo 的 7 个网络对 FC 重要性进行分组获得的网络级判别模式。(D)平均网络间和网络内 FC 强度。网络间 FC 强度是通过计算每个网络和所有其他网络中判别连接的重要性的平均来计算的。VIS,视觉网络;SMN,躯体运动网络; DAN,背侧注意网络;VAN,腹侧注意网络;LIM,边缘网络;FPC,额顶叶控制网络;DMN,默认模式网络。
支持的 ML 算法包括:1. 监督/分类 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、逻辑回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。2. 监督/回归 - AdaBoost、卷积神经网络 (CNN)、决策树、广义线性模型 (GLM)、K-最近邻 (KNN)、线性回归、多层感知器 (MLP)、朴素贝叶斯、随机森林、循环神经网络 (RNN)、支持向量回归 (SVM)、XGBoost。 3. 时间序列/预测 - 自回归综合移动平均线 (ARIMA)、长短期记忆 (LSTM)、Prophet、Seq2Seq、时间卷积网络 (TCN)、NBeats、Autoformer、TCMF。4. 时间序列/异常 - 自动编码器、DBSCAN、椭圆包络、孤立森林、K-Means、一类 SVM。
使用基于已知数据生成过程的合成数据集(可以在Li,2024年)和房价建模的经验例子进行证明。在这里,我使用了一个包含16,581个物业销售记录的西雅图房屋价格数据集。财产价格日志对8个住房属性以及物业的位置(坐标)进行了回归。测试了多个机器学习模型,最佳性能模型是XGBoost,样本外R²值为0.91。然后,Geoshapley值然后用于解释受过训练的XGBOOST模型。下图显示了从上到下的特征重要性排名的摘要图。Geoshapley值此处衡量百分比变化为财产价格。位置(GEO)的贡献是影响房屋价格的最重要功能,将其降低多达43%或将其价值增加多达123%,具体取决于该位置。住房特征(包括起居区和等级的平方英尺)非常重要。
背景:心脏手术相关的急性肾损伤(CSA-AKI)是儿科心脏手术后的主要并发症,这与发病率和死亡率的增加有关。手术前后对CSA-AKI的早期预测可以显着改善围手术期间的预防和治疗策略的实施。但是,关于如何识别CSA-AKI高风险的小儿患者的临床信息有限。目的:该研究旨在开发和验证机器学习模型,以预测儿科人群中CSA-AKI的发展。方法:这项回顾性队列研究招募了1个月至18岁的患者,他们在中国南部南大学的3个医学中心接受了心肺旁路手术。CSA-AKI是根据2012年肾脏疾病的定义:改善了全球结果标准。特征选择分别应用于2个数据集:术前数据集以及术前和术中数据集。测试了多个机器学习算法,包括K-Nearest邻居,天真的贝叶斯,支持向量机,随机森林,极端梯度增强(XGBoost)和神经网络。通过使用接收器操作特征曲线(AUROC)下的区域(AUROC),在交叉验证中确定了最佳性能模型。使用Shapley添加说明(SHAP)方法生成模型解释。结果:其中一个中心的3278名患者用于模型推导,而另外2个中心的585例患者用作外部验证队列。CSA-AKI发生在衍生队列中的564例(17.2%)中,外部验证队列中的51例(8.7%)患者发生。在考虑的机器学习模型中,XGBoost模型在交叉验证中实现了最佳的预测性能。仅使用术前变量的XGBoost模型的AUROC为0.890(95%CI 0.876-0.906),在外部验证队列中为0.857(95%CI 0.800-0.903)。包括术中变量时,AUROC分别增加到0.912(95%CI 0.899-0.924)和0.889(95%CI 0.844-0.920)。Shap方法表明,基线血清肌酐水平,灌注时间,身体长度,手术时间和术中失血是CSA-AKI的前5个预测因子。结论:可解释的XGBOOST模型为CSA-AKI的早期预测提供了实用的工具,CSA-AKI对于正在进行心脏手术的小儿患者的风险分层和围手术期管理非常有价值。
摘要随着技术高级和电子商务服务的扩展,信用卡已成为最受欢迎的付款方式之一,导致银行交易量增加。此外,欺诈的显着增加需要高银行交易成本。因此,检测欺诈活动已成为一个引人入胜的话题。在这项研究中,我们考虑使用类重量超级参数来控制欺诈和合法交易的重量。我们特别使用贝叶斯优化来优化超参数,同时保留诸如不平衡数据之类的实际问题。,我们提出重量调整作为不平衡数据的预先过程,以及Catboost和XGBoost,以通过考虑投票机制来提高LightGBM方法的性能。最后,为了进一步提高绩效,我们使用深度学习来微调超参数,尤其是我们提出的重量调节器。我们对现实世界数据进行一些实验,以测试提出的方法。为了更好地覆盖不平衡的数据集,除了标准ROC-AUC外,我们还使用召回精度指标。使用5倍的交叉验证方法分别评估了Catboost,LightGBM和XGBoost。此外,大多数投票集合学习方法用于评估组合算法的性能。LightGBM和XGBoost达到了ROC-AUC D 0.95,精度为0.79,召回0.80,F1得分0.79和MCC 0.79的最佳水平标准。这对我们将其比较的尖端方法进行了重大改进。通过使用深度学习和贝叶斯优化方法来调整超参数,我们还符合ROC-AUC D 0.94,精度D 0.80,召回D 0.82,F1分数D 0.81和MCC D 0.81。
本文旨在使用最全面和最新的数据库开发一个独特的人工神经网络(ANN)的方程以及基于MATLAB和PYTHON的图形用户界面(GUI),以预先指示轴向填充的混凝土混凝土填充的混凝土混凝土填充的混凝土填充混凝土填充的双层皮肤管(CFDST)短材料和湿润的柱子,并用正常的材料和高音材料材料。使用1721组数据训练和测试了两种机器学习(ML)方法,它们是ANN和极端梯度提升(XGBOOST),其中129种从实验研究中收集了129个,而有限元(FE)模拟产生了1592个。通过将其预测与实验和FE结果进行比较,评估了开发的ML模型的准确性。为了证明每个参数对预测结果的影响,使用了Shapley添加说明(SHAP)方法。开发的ML模型还用于进行参数研究,以检查几何和材料参数对预测结果的影响。将ML模型的准确性和所提出的基于ANN的方程式预测CFDST列的最终轴向容量的准确性与六种设计方法的轴向容量进行了比较。提出了一个数值示例,以使用拟议的基于ANN的方程来说明CFDST列的设计过程。结果表明,ANN模型在看不见的数据上的性能要比XGBoost模型更好,该模型的XGBoost模型在测试集中均均方根误差较低。结果还表明,在预测准确性方面,ML模型和提出的基于ANN的方程优于其他设计模型。
4 abhiughade1422@gmail.com,5 hodetc_sits@sinhgad.edu摘要 - 制造业中零部件的预测需求预测对供应链管理至关重要,因为各种因素都会影响产品的需求。必须在库存中调节和维护组件的缓冲库存。该项目着重于减少制造过程中的停机时间,通过预测组件的需求并提供对缓冲股票的分析,以避免停机时间和超支公司资源以获取该组件,这些组件在该行业中有波动的需求。该项目着重于库存优化,降低成本和降低停机时间。本文旨在通过比较随机森林,XGBOOST和LSTM等各种机器学习模型的准确性来提出制造行业组件间歇性或挥发性需求的综合预测策略。通过提供对组件的需求预测的宝贵见解来增强供应链策略,这是该机器学习模型的目标,以实现知情决策。索引术语 - 内置优化,库存管理系统,机器学习,XGBOOST,随机森林,LSTM,需求预测,供应链管理,时间序列预测,成本和停机时间降低,合奏学习。