Loading...
机构名称:
¥ 1.0

摘要:舌头疾病的诊断是基于对各种舌头特征的观察,包括颜色,形状,质地和水分,这些特征表明患者的健康状况。舌色是一种这样的特征,在识别疾病和疾病进展水平方面起着至关重要的功能。随着计算机视觉系统的发展,尤其是在人工智能领域,在获取,处理和分类舌头图像方面取得了重要进展。本研究提出了一个新的成像系统,以分析和提取不同颜色饱和的舌色特征,并在五种颜色空间模型(RGB,YCBCR,HSV,LAB和YIQ)的不同光条件下。使用六个机器学习算法(即幼稚的贝叶斯(NB),支持向量机(SVM),K-Neareart Neight(KNN),DICKERT(NB),决策树(DTS),森林(DTS),森林(dts),森林(dts),fortive(dts fornes forter(dts forter)(dts),训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。 从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。 基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。 因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。训练了5260个图像(红色,黄色,绿色,蓝色,灰色,白色,白色和粉红色)。在任何照明条件下颜色。从机器学习算法获得的结果说明,XGBoost的精度最高,为98.71%,而NB算法的精度最低,为91.43%。基于这些获得的结果,选择了XGBoost算法作为所提出的成像系统的分类器,并与图形用户界面相关联,以实时预测舌色及其相关疾病。因此,该提出的成像系统为未来的护理卫生系统内的舌头诊断开辟了大门。

二氧化碳和基于木质素的可持续聚合物,

二氧化碳和基于木质素的可持续聚合物,PDF文件第1页

二氧化碳和基于木质素的可持续聚合物,PDF文件第2页

二氧化碳和基于木质素的可持续聚合物,PDF文件第3页

二氧化碳和基于木质素的可持续聚合物,PDF文件第4页

二氧化碳和基于木质素的可持续聚合物,PDF文件第5页