摘要:近年来,人们对量子机器学习的兴趣日益高涨,研究人员积极开发利用量子技术的力量解决各个领域高度复杂问题的方法。然而,由于量子资源有限和固有噪声,在有噪声的中间量子设备 (NISQ) 上实现基于门的量子算法面临着显著的挑战。在本文中,我们提出了一种在量子电路上表示贝叶斯网络的创新方法,专门用于应对这些挑战。我们的目标是最大限度地减少在量子计算机上实现量子贝叶斯网络 (QBN) 所需的量子资源。通过精心设计动态电路中的量子门序列,我们可以优化有限量子资源的利用率,同时减轻噪声的影响。此外,我们提出了一项实验研究,证明了我们提出的方法的有效性和效率。通过在 NISQ 设备上进行模拟和实验,我们表明我们的动态电路表示显著降低了资源需求并增强了 QBN 实现的稳健性。这些发现凸显了我们的方法的潜力,为量子贝叶斯网络在当前可用的量子硬件上的实际应用铺平了道路。
生存分析是癌症,心血管疾病和传染病等各种领域的公共卫生和临床研究的基石(Altman&Bland,1998; Bradburn等,2003)。传统的参数和半参数统计方法,例如COX比例危害模型,通常用于生存分析(Cox,1972)。但是,这些方法有几个局限性,尤其是应用于复杂数据时。一个主要问题是需要限制性假设,例如比例危害和预定义的功能形式,在复杂的,现实世界中的医疗保健数据中可能不正确(Harrell,2015; Ishwaran等,2008)。此外,这些方法通常在高维数据集上遇到困难,从而导致过度拟合,多重共线性以及处理复杂的相互作用的问题(Ishwaran等,2008; Joffe等,2013)。
描述模型整合了环境 DNA (eDNA) 检测数据和传统调查数据,以联合估计物种捕获率(参见包插图:< https://ednajoint.netlify.app/ >)。模型可以与通过传统调查方法(即诱捕、电捕鱼、目测)获得的计数数据以及通过聚合酶链反应(即 PCR 或 qPCR)从多个调查地点复制的 eDNA 检测/未检测数据一起使用。估计参数包括假阳性 eDNA 检测的概率、相对于传统调查缩放 eDNA 调查灵敏度的站点级协变量以及传统渔具类型的捕获系数。模型使用“Stan”概率编程语言通过贝叶斯框架(马尔可夫链蒙特卡罗)实现。
皮质神经假体视觉中的挑战是确定视觉皮层的最佳,安全刺激模式,以唤起盲人个体中所需的感知(特别是光感知),称为磷光素。当前,临床研究通过要求描述刺激方案的描述来洞悉感知磷光的感知特征。然而,多电极刺激设置的巨大参数空间使得很难得出关于导致良好感知磷光的刺激模式的最佳结论。需要在电刺激的参数空间中进行系统搜索,以实现良好的感知。贝叶斯优化(BO)是有效查找最佳参数的框架。使用患者对感知的评分作为反馈,可以建立基于迭代产生的刺激方案的患者反应模型,以最大程度地提高感知质量。通过迭代呈现刺激方案测试了用内部96通道微电极阵列植入的患者,该患者通过BO生成的刺激方案,用于第二个实验,该刺激方案是通过BO生成的。虽然标准BO方法并不能很好地扩展到超过十几个输入的问题,但我们建议使用基于信任区域的BO优化一组40个电极电流。生成的协议确定了哪些电极是从集合中同时刺激的,以及从0-50 µA范围的电流,最大总电流约束为500 µA。患者根据李克特量表上对感知质量的喜好提供了每种刺激的反馈,其中7个分数表示最高质量和0没有感知。在BO实验中,与RG实验相比,患者感知质量评级逐渐收敛于更高的值。同样,根据观察到的患者对较高的磷光磷酸的偏好,BO选择了逐渐更高的总电流值。最后,在先前的研究中,观察到的电极在产生磷光感知方面更有效,也可以通过BO逐渐选择较高的电流值的分配。这项研究证明了BO基于患者的反馈而融合到最佳刺激方案的力量,从而更有效地搜索了临床研究的刺激参数。
ilke aydogan:i.aydogan@ieseg.fraurélienbaillon:baillon@em-lyon.com emmanuel kemel:emmanuel.kemel@gemel@greg-hec.com chen li:c.li@ese@ese.eur.nl,我们感谢Peter Wakker和Han Bleichrodt和Han Bleichrodt的帮助和讨论。Baillon承认NWO Vidi Grant 452-13-013的财务支持。Aydogan承认该地区Haut-De-France(2021.00865 Clam)和欧盟的Horizon Horizon Europe Research and Innovation计划,根据Grant协议(101056891具有能力)。li感谢NWO Veni Grant VI.Veni.191E.024的财务支持。1 See, for instance, Phillips and Edwards ( 1966 ), Edwards ( 1968 ), Tversky and Kahneman ( 1974 ), El-Gamal and Grether ( 1995 ), Oswald and Grosjean ( 2004 ), Möbius, Niederle, Niehaus, and Rosenblat ( 2022 ), Bén- abou and Tirole ( 2016 ), Ambuehl and Li ( 2018 ).
本病例讨论了一名 85 岁患者,该患者既往有白内障病史,导致右眼视力严重受损,并因右太阳穴基底细胞癌 (BCC) 及其局部复发而多次接受手术(2010 年局部广泛切除;2017 年再次切除并用皮肤移植重建),患者出现皮肤肿瘤进行性生长和扩散。检查后发现,表面有一块不规则的红斑,有多个溃疡(最大的一个位于左太阳穴,尺寸为 4×3 厘米)。病变从一个太阳穴延伸到另一个太阳穴,穿过前额,沿着手术皮肤移植的边缘,侵入左上眼睑,一个突出的肿块延伸出眼眶。对最大的溃疡进行皮肤活检显示为浸润性亚型基底细胞癌,并有骨质侵袭区域。鉴于临床情况困难、解剖位置复杂以及手术可能引起的并发症,经过全面评估后,患者被认为适合接受放射治疗。患者对治疗表现出良好的耐受性,局部治疗轻微放射性皮炎,并取得了令人满意的治疗反应。临床和放射学评估显示病变大小明显缩小,无明显毒性,左眼视力保留。本病例突出了姑息放射治疗在上面部复发性巨大基底细胞癌并侵袭到眼眶的患者中的成功应用,在手术或全身治疗不可行的情况下实现了视力保留。放射治疗正在成为具有挑战性的解剖位置复发性基底细胞癌的一种有价值的治疗选择。然而,仔细监测和严格的治疗计划对于实现良好结果并尽量减少副作用至关重要。
描述在正常线性模型下对数据进行贝叶斯变量选择,其模型参数随后作为先验分布作为Power Exped-Exped-Posteror(PEP)或固有的(前者的特殊情况)(Fouskakis和Ntzoufras(2022)(2022) doi:10.3390/iconalitrics8020017>)。模型空间上的先前分布是所有模型上的均匀分布或模型维度的均匀分布(beta-binomial先验的特殊情况)。选择是通过对所有可能的模型进行全面枚举和评估或使用Markov Chain Monte Carlo模型组成(MC3)算法(Madi-Gan and York(1995))进行选择。的互补功能,用于贝叶斯模型平均以及绘图和打印结果下的假设检验,估计和预测。可以将结果与其他众所周知的先验者在模型参数和模型空间上获得的结果进行比较。
MCMC.QPCRCCR软件包。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 amp.ff。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 4 Beckham.Data。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>2 amp.ff。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 Beckham.Data。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>4 Beckham.Data。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 Beckham.ff。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 5珊瑚色。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 6 CQ2Counts。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>4 Beckham.ff。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>5珊瑚色。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 CQ2Counts。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 CQ2GEMENT。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8 CQ2LOG。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 9诊断。mcmc。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8 CQ2LOG。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9诊断。mcmc。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>11稀释。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 12 div>11稀释。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>12 div>
引入了一个新的贝叶斯建模框架,用于分段均匀变量 - 内存马尔可夫链,以及一系列有效的算法工具,用于更改点检测和离散时间序列的分割。建立在最近引入的贝叶斯上下文树(BCT)框架上,离散时间序列中不同片段的分布描述为可变内存马尔可夫链。对变化点的存在和位置的推断。促进有效抽样的关键观察者是,可以精确地计算数据的每个段中的先前预测可能性(在所有模型和参数上平均)。这使得可以直接从变更点的数量和位置的后验分布中进行采样,从而导致准确的估计,并提供结果中不确定性的自然定量度量。也可以以其他额外的计算成本来获得每个细分市场中实际模型的估计。对模拟和现实世界数据的结果表明,所提出的方法是强大的,并且表现效果也不如先进的技术。
使用MCMC算法的贝叶斯系统发育分析产生了以系统发育树和相关参数样本形式的系统发育树的poserior分布。树空间的高维度和非欧几里得性质使总结树空间中后验分布的核心趋势和方差复杂。在这里,我们介绍了一个可从树的后部样本构建的可构造的新的树木分布和相关的点估计器。通过模拟研究,我们表明,这一点估计器的性能也至少要比产生贝叶斯后摘要树的标准方法更好。我们还表明,执行最佳的摘要方法取决于样本量和以非平凡的方式的尺寸 - 问题。