通过丝网印刷和压力的烧结技术在柔性基材上制造了热电发生器(TEG),用于低温收集应用。在25 MPa的压力下,在345 C下烧结的屏幕打印的BI-SB-TE(P-型)和Bi-Se-Te(N型)纤维显示出相应的热电功率因数为14.3和8.4 m W/CM,在室温下为K 2。由三对BI-SB-TE和BI-SE-TE热元制成的平面TEG在54.9 C的温度差下提供50 m W的输出功率。充实的TEG在纵向和热元的纵向和横向方向的弯曲1000循环后没有电降解。提出了定向热的设计,以最大程度地提高平面TEG的热供应面积。制造的TEG可以在5.7 c的温度差下达到58.3 m w/cm 2的最大输出功率密度,并在39.8C的温度下连接到热源的石墨热传输层。它可以用作可穿戴电子设备的自我维护电源,并通过从环境或人体中收集热能设备。©2020 Elsevier B.V.保留所有权利。
每个成核细胞中存在的二十三对染色体,一个人分别从母亲那里遗传了23个染色体,分别通过OVA和精子传播的父亲23对染色体。在每个细胞分裂时,染色体复制,一组送给每个子细胞。关于身体的内部组织,身体特征和生理功能的所有信息均以四个核苷酸或碱基的语言(序列)的语言(序列)编码:腺嘌呤(A),鸟嘌呤(G),胸腺氨酸(T),胸腺氨酸(T)和胞嘧啶(C)以及糖磷酸磷酸盐back骨。人类单倍体细胞包含30亿个基础。人体的所有细胞都具有完全相同的DNA,但在核苷酸序列中,它因单个到个体而异。线粒体DNA(mtDNA)在线粒体中大量副本中发现的是圆形的,双链,16,569个碱基对,并显示出母亲的遗传。这在通过母体线路相关的人的研究中特别有用。也比核DNA大量副本,可用于分析降解样品。同样,Y染色体显示出父亲的遗传,并被用来追踪男性谱系并从性侵犯混合物中解析雄性DNA。
羊栖菜是东亚地区一种具有商业价值的大型藻类,了解这种大型藻类的繁殖策略对于保护和恢复至关重要。在这里,我们使用种群遗传学方法来确定羊栖菜的繁殖策略。为此,我们执行了两种采样程序:随机采样和方形采样。对于随机采样,我们在相距 700 米的 A、B、C 和 D 地点以 > 1 米的间隔采集了 80 个样本。对于方形采样,我们在 B 和 D 两个地点使用由 10 厘米网格组成的 50 厘米 × 50 厘米方形采集了 207 个样本。使用 14 个(随机采样)或 13 个微卫星(方形采样)通过基因分型识别这些样本中的克隆同源体。对于通过随机采样获得的样本,仅检测到三对克隆对。对于通过样方取样获得的样本,每个样方包含 4– 7 个基株,平均大小为 23.2 ± 14.3 厘米(标准差),最大为 70.7 厘米。地点 B 的无性水平高于地点 D,这可能是由于暴露时间较长。地点 B 位于该物种潮间带的后缘。通过有性生殖的基因流动超过 65% 局限于样方内,而至少 10% 延伸至数米至数公里。综合起来,这些结果表明 S. fusiforme 在小范围内通过有性和无性传播其后代,在更大范围内通过有性传播,无性水平取决于暴露产生的压力。
摘要:由于 COVID-19 引发的分布式协作的广泛参与,它已成为一种新趋势,并一直延续到后疫情时代。本研究通过使用功能性近红外光谱评估设计合作者之间的脑间同步模式 (IBS),研究了两种协作环境(共置和远程环境)中的集体表现。初步研究由三对拥有 2-3 年专业产品设计经验的二人组进行。每对二人组在不同的环境中完成两个指定的设计任务。在分布式条件下,参与者通过视频会议进行互动,在视频会议中,他们被允许通过使用共享数字白板进行口头表达和素描进行交流。为了防止不同的素描工具对设计输出的影响,我们在两种环境中都采用了数字素描。合作者之间的互动分为三种行为:仅口头、仅素描和混合交流(口头和素描)。结果显示,在分布式条件下进行混合交流时,IBS 水平高于在共置条件下。相比之下,当参与者在同一地点的环境中仅使用素描作为互动方式时,IBS 的发生率会增加。在物理隔离的情况下,结合言语和素描的混合沟通方式可能会导致更协调的认知过程。设计合作者倾向于调整他们的互动行为,以适应不同的设计环境,加强思想交流,并建立设计共识。总的来说,本文从神经认知的角度讨论了虚拟协作设计的表现,为未来促进有效虚拟团队合作的干预设计提供了宝贵的见解。
胎儿静脉系统在妊娠第六周左右开始发育,有三对静脉:脐静脉、卵黄静脉和主静脉。这些静脉对于将血液从胎盘输送到心脏至关重要。随着肝脏的成熟,肝脏和这些静脉之间的连接形成复杂的静脉系统。该过程的中断可能导致各种胎儿静脉异常,这些异常是由这些静脉的形成或退化异常引起的。常见的异常包括静脉导管发育不全、右脐静脉持续存在、脐静脉曲张、门静脉系统发育不全和下腔静脉中断。静脉导管发育不全可导致代偿性血流变化,而当左脐静脉退化时会出现右脐静脉持续存在。脐静脉曲张是脐静脉扩张,门静脉系统发育不全会扰乱正常的肝脏血流。 IVC 中断会影响全身静脉回流到心脏。诊断这些异常需要详细的超声评估,包括多普勒研究和产前监测,以评估潜在并发症并指导适当的临床治疗。在评估复杂的通信路径时,第一步是检查该结构的组织方式。静脉系统的分类分割可带来更广阔的视野和更高的感知能力。在这篇图文中,胎儿静脉系统及其异常根据其主要来源进行分类。特别注意使用彩色示意图和真实的二维和彩色超声图像描绘正常解剖结构和异常,这对促进空间感知和简化胎儿静脉系统异常的分类方法起着重要作用。
摘要:由于 COVID-19 引发的分布式协作的广泛参与,它已成为一种新趋势,并一直延续到后疫情时代。本研究通过使用功能性近红外光谱评估设计合作者之间的脑间同步模式 (IBS),研究了两种协作环境(共置和远程环境)中的集体表现。初步研究由三对拥有 2-3 年专业产品设计经验的二人组进行。每对二人组在不同的环境中完成两个指定的设计任务。在分布式条件下,参与者通过视频会议进行互动,在视频会议中,他们被允许通过使用共享数字白板进行口头表达和素描进行交流。为了防止不同的素描工具对设计输出的影响,我们在两种环境中都采用了数字素描。合作者之间的互动分为三种行为:仅口头、仅素描和混合交流(口头和素描)。结果显示,在分布式条件下进行混合交流时,IBS 水平高于在共置条件下。相比之下,当参与者在同一地点的环境中仅使用素描作为互动方式时,IBS 的发生率会增加。在物理隔离的情况下,结合言语和素描的混合沟通方式可能会导致更协调的认知过程。设计合作者倾向于调整他们的互动行为,以适应不同的设计环境,加强思想交流,并建立设计共识。总的来说,本文从神经认知的角度讨论了虚拟协作设计的表现,为未来促进有效虚拟团队合作的干预设计提供了宝贵的见解。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。
摘要 热带布洛米亚螨和屋尘螨在引发过敏方面起着重要作用。马来西亚布洛米亚螨在敏感人群中引起 IgE 反应,但在家用灰尘中很少见,因为它在形态上与热带布洛米亚螨相似,使得这些物种的鉴定很困难。螨虫的鉴定主要基于形态学,这是一种耗时且不明确的方法。在此,我们描述了一种基于核糖体 DNA 的多重聚合酶链反应 (mPCR) 检测方法,该方法能够鉴定热带布洛米亚螨、屋尘螨和马来西亚布洛米亚螨的混合培养物,和/或从环境灰尘中鉴定这些物种。为此,对 5.8S 和 28S 基因部分序列两侧的内部转录间隔区 2 (ITS2) 区域进行了 PCR 扩增、克隆和测序。将获得的序列与 GenBank 数据库中可用的同特异性序列比对,以进行引物设计和系统发育研究。选择三对引物组成 mPCR 检测,用于验证巴西萨尔瓦多家庭屋尘样本 (n = 20) 中不同螨虫的频率。Blomia tropicalis 是最常见的,在 95% 的样本中发现,其次是 G. malaysiensis (70%) 和 D. pteronyssinus (60%)。除了首次报道 G. malaysiensis 在巴西的出现之外,我们的结果还证实了 ITS2 区域对于螨虫识别的良好分辨率。此外,mPCR 检测被证明是一种快速可靠的工具,可用于在混合培养物中识别这些螨虫,并可应用于未来的流行病学研究,以及用于通用螨虫提取物生产的质量控制。
设计过程中的软件系统为探索以前不可行设计提供了新的机会,这些设计可以通过跨学科的通用方法和工具实现。通过 (a) 气动弹性剪裁来承载重新设计的衍生机翼;(b) 开发非常精确的颤振建模和颤振控制合成方法和工具,从而在开发、认证和运行期间改善颤振管理,从而可以快速将现有设计应用于衍生飞机,降低技术风险(例如,使用控制来解决开发过程中发现的颤振问题)。开发的工具和方法的准确性在经济实惠的实验平台上得到验证,然后进行规模化研究,展示跨学科开发周期。制造商通过集成开发颤振控制和气动弹性剪裁,获得用于提高飞机性能的成本效益高的方法、工具和演示器。这些跨学科能力改善了衍生飞机和新飞机的设计周期和验证与确认过程。飞行测试数据将发布在项目网站上,为全球航空航天研究界提供基准。项目成果为制定未来欧盟柔性运输飞机的认证标准起到了催化剂的作用。图 1 所示的飞机是“地平线 2020”项目“无颤振飞行包线扩展以实现经济性能改进”(FLEXOP)的主要演示机,旨在开发和测试主动颤振抑制控制算法 [1]。这架单引擎演示机翼展为 7 米。起飞重量通常为 55 公斤,但压载重量最多可增加 11 公斤。该飞机配备一台 300 N 喷气发动机 [2],位于机身后部。空气制动系统从机身侧面偏转,可实现快速减速、快速空速控制和大进近角。尾翼配置为 V 型尾翼,而每个机翼半部具有四个控制面,其中最外侧的控制面用于抑制颤振(见图 2)。两个最内侧的控制面在起飞和降落时用作增升装置。总共制造了三对机翼,将在无人机试验台上进行测试:• 机翼 - 0 – 一对使用平衡对称型层压板优化的机翼作为参考机翼,颤振速度远远超过飞机的运行速度。该机翼组主要用于基本飞行测试和刚性模型验证。• 机翼 - 1 – 一对颤振机翼,设计用于在测试范围内触发颤振,在运行速度范围内有两种主要颤振模式。然后,将使用主动颤振控制扩展飞行包线。• 机翼 - 2 – 一对使用不平衡复合层压板优化的机翼,通过气动弹性剪裁展示被动载荷减轻。