约为15–20%。与激素受体和HER2阳性BC相比,TNBC具有高度侵入性的临床过程,具有较早的发作年龄,更明显的转移性潜力,较差的临床预后,更高的复发率和较低的存活率(1,2)。传统的TNBC治疗主要包括辅助治疗,外科治疗和放射疗法。辅助治疗是癌症治疗的关键策略,可以避免转移的风险以及伴有快速进展和肿瘤复发的风险。但是,化学抗性是癌症辅助治疗的主要问题,在转移性癌症治疗中的失败率高达90%(3)。此外,由于其特殊的分子表型,TNBC对内分泌治疗或分子靶向疗法不敏感。因此,全身化疗仍然是治疗的主要手段,但是常规的术后辅助放疗和化学疗法的疗效较差,残留转移最终会导致肿瘤复发和更多副作用(4)。但是,没有针对TNBC的靶向治疗策略。全身化疗仍然是治疗的主要方法,化学疗法的治疗作用通常会持续很短的时间,从而导致TNBC的治疗是临床挑战(4)。因此,开发更有效的治疗策略对于TNBC的治疗具有重要意义。越来越多的证据表明炎症有助于肿瘤的发生。炎症细胞可以促进肿瘤形成,释放生存因子,促进血管生成和淋巴管生成,刺激DNA损伤,重塑细胞外基质以促进侵袭,涂上肿瘤细胞,提供通过淋巴管和毛细管传播细胞的受体,并避免宿主防御机制(5)。Toll样受体4(TLR4)是免疫细胞表面上的必需受体之一,通常在肿瘤细胞中表达,并参与BC的进展,侵袭和耐药性(6,7)。TLR4在接收肿瘤抗原信息后激活髓样分化因子88(MYD88),促进核因子κB(NF-κB)的核转移,并激活基因转录,诱导炎性细胞因子的产生并引起炎症反应(8,9)。根据研究报告,NF-κB途径可能是TNBC进展的关键调节剂(10),可以通过促进包括细胞因子,趋化因子,趋化因子,细胞粘附分子和
摘要:MPOX是一种由属于正托氧化病毒(OPXV)属的猴蛋白质病毒(MPXV)引起的传染病,其中包括天花和vaccinia病毒(VACV)。始于2022年5月的全球MPOX爆发已感染了88,000多人。基于VACV的疫苗可保护对MPOX疾病的保护,但使血清学测定法进行疾病监测复杂化。We tested the reactivity of serum IgG from Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN)-vaccinated ( n = 12) and convalescent mpox-infected ( n = 5) individuals and uninfected, non-vaccinated controls ( n = 32) to MPXV/VACV proteins A27, A29, A30, A35, B16, B21,C19,D6,E8,H3,I1和L1。Using a subset of MPXV antigen-based assays (A35, B16, E8, H3, and I1), we conducted a mpox antibody survey of serum from 214 individuals, including 117 (54.7%) people with HIV (PWH) collected between June 2022 and January 2023, excluding individuals who reported recent mpox vaccination or infection, and 32 young, pre-pandemic controls.康复血清对大多数测试的抗原反应强烈。疫苗血清反应仅限于A35,E8,H3和I1。在所有接种疫苗的个体中, IgG抗体均明显升高。 b16 IgG表现出较高的敏感性(100%[95%CI:56.55–100.0%])和特定城市(91.67%[64.61–99.57%]),用于区分感染与MVA-BN疫苗接种,而E8 IgG则显示100%[75.75-100] sensitivity and 100%[75.75-100] [75.75-100] [7]检测并区分接种疫苗的个体与对照组。 男性的血清阳性率为10/129(7.8%),而女性中的血清阳性率为1/85(1.2%)。IgG抗体均明显升高。b16 IgG表现出较高的敏感性(100%[95%CI:56.55–100.0%])和特定城市(91.67%[64.61–99.57%]),用于区分感染与MVA-BN疫苗接种,而E8 IgG则显示100%[75.75-100] sensitivity and 100%[75.75-100] [75.75-100] [7]检测并区分接种疫苗的个体与对照组。男性的血清阳性率为10/129(7.8%),而女性中的血清阳性率为1/85(1.2%)。我们确定了11/214(5.1%)最近的血清样品和1/32(3.1%)年轻的,流行前的对照组,其血清阳性为≥2MPXV抗体,包括PWH的6.8%。我们的发现提供了对MPOX的体液免疫反应的洞察力,并证明了廉价,基于抗原的血清监视在识别无症状或未报告的感染中的有用性。
和现代建筑建立在更普遍的有机LED(OLEDS)的基础上。[1,3-5]在整个可见频谱中具有电荷平衡和高效率仍然远离最佳的QD,QD通常被用作颜色 - 纯发光下调转换器,用于在背光无机LED中显示。[2,6]虽然对设备档案的研究对于将来的开发至关重要,但许多小组也在探索QD的替代材料,以降低成本,最大程度地减少丰富的问题并限制毒性。[7-9]最初在2012年作为照片伏特的有前途的材料出现,[10]卤化物钙钛矿对于几乎所有光启动器件(例如光电探测器)具有巨大的潜力,例如光电探测器,[11]激光器,[12]和LED。[13–15]卤化物钙钛矿NC对于光发射特别有利,其发射波长可以通过组合和形态在整个可见范围内进行调谐,[16]超高的量子产量(Qys)(Qys),即使接近统一,甚至接近统一,[17-19],[17-19]和合成,通常是actile and facile conigile facile cookile cookile,sable,便宜,易于扩展。[20,21]相比之下,传统QD通常需要Inorranic Core-shell结构,高前体纯度和复杂的,乏味的合成以获得令人印象深刻的光学特性。[22]但是,钙钛矿NC缺乏足够的稳定性
年,随着医疗和诊断技术的发展,总体癌症死亡率下降了,但肺癌治疗的影响仍然不理想。主要原因是肺癌的早期诊断率低,治疗方法有限和耐药性,这会导致治疗效率不佳,肺癌患者的预后不良(3,4)。随着临床医学和分子生物学技术的进展,肺癌在诊断和治疗方面取得了长足的进步,尤其是靶向药物的发展,这显着改善了肺癌的治疗结果。 但是,关于肺癌的发生和进展机制仍然存在许多不确定性(5-7)。 因此,探索肺癌的分子机制并找到可以用作早期诊断和治疗靶标的新分子标记物可以为诊断和治疗肺癌提供新的策略。 这对于改善肺癌患者的生存时间和生活质量至关重要,还提供了阐明肺癌机制的新想法。随着临床医学和分子生物学技术的进展,肺癌在诊断和治疗方面取得了长足的进步,尤其是靶向药物的发展,这显着改善了肺癌的治疗结果。但是,关于肺癌的发生和进展机制仍然存在许多不确定性(5-7)。因此,探索肺癌的分子机制并找到可以用作早期诊断和治疗靶标的新分子标记物可以为诊断和治疗肺癌提供新的策略。这对于改善肺癌患者的生存时间和生活质量至关重要,还提供了阐明肺癌机制的新想法。
摘要 目的:探讨长链非编码RNA(lncRNA)CAC-NA1G-AS1通过介导p53调控结直肠癌(CRC)细胞增殖和侵袭能力,从而影响CRC进展的作用。患者与方法:首先测定CRC组织和邻近正常组织中的CACNA1G-AS1水平。检测不同肿瘤分期CRC患者的CACNA1G-AS1水平。评估CACNA1G-AS1影响HCT116和SW480细胞增殖和侵袭能力的变化。分析CACNA1G-AS1的亚细胞分布。通过Western印迹、RNA免疫沉淀(RIP)和染色质免疫沉淀(ChIP)技术检测CAC-NA1G-AS1与EZH2的相互作用,最终探究CACNA1G-AS1靶基因的生物学功能。结果:CACNA1G-AS1在结直肠癌组织中表达上调,而癌旁正常组织中CACNA1G-AS1表达水平维持在较高水平,且在Ⅲ-Ⅳ期结直肠癌患者中仍高于Ⅰ-Ⅱ期患者。敲低CACNA1G-AS1后,HTC116和SW480细胞的增殖和侵袭能力降低。CACNA1G-AS1主要分布在细胞核中。此外,CACNA1G-AS1被证实与EZH2存在相互作用。敲低CACNA1G-AS1或EZH2可上调p53水平,降低EZH2对p53的募集能力。最终,p53敲低可部分逆转CACNA1G-AS1对HCT116细胞增殖能力的调控作用。结论:CACNA1G-AS1通过与EZH2形成致癌复合物下调p53水平,从而增强CRC细胞的增殖和侵袭能力。
1基础科学系,医学和健康科学学院,纳卡卢尼亚大学,08195 Sant Cugat delVallès,西班牙2计划,实体瘤,应用医学研究中心(CIMA),NAVARRA大学,31008 PAMPLONA,SPAIN DECIBER,SPAIN DE DECIBER NIBIBER 4.28 ciber n deciber n caimer ni 28 c纳瓦拉大学科学学院生物化学和遗传学系,西班牙Pamplona 5 Áticasy Digestivas (CIBEREHD),卡洛斯三世健康研究所,28029 马德里,西班牙 7 纳瓦拉大学应用医学研究中心(CIMA)分子治疗计划,31008 潘普洛纳,西班牙 8 纳瓦拉大学病理学、解剖学和生理学系,31008 潘普洛纳,西班牙 9 巴塞罗那自治大学神经科学研究所,贝拉特拉,08193 Cerdanyola del Vallès,西班牙 10 卡洛斯三世健康研究所,28029 马德里,西班牙 1 ncasals@uic.es(NC);电话:+34-935042000
Maoli Gong, 2, 2, 4 , 61 Jiayi Li, 5, 6, 61 Zilong Qin, 7, 61 9 Haoran Liu, 5 Friends, 5 Joel A. Roses, 10 Ana S.A. Sullivan, 12, Tianyun Wang, 16, 17 Susan M. Hiatt, Lahner, 21 Sherr Elliott, 22 Yiyan Ruan, 23 Cyril Mignot, 24 Boris Keren, 24 Hua Xie,Julie Gauthier,36,37 Jacques L. Michaud,37,38
Aditi Verma,Reddy Peera Kommaddi,Barathan Gnanabharathi,Etienne Hirsch,Vijayalakshmi Ravindranath。在帕金森氏病中,对多巴胺能神经元的发育和分化至关重要的基因被下调。神经传播杂志,2023,130(4),pp.495-512。10.1007/S00702-023-02604-X。Inserm-04002894
myc和由RNA-Seq确定的MCL1,以未处理的SU-DHL-4和SU-DHL-10 DLBCL细胞为单位为每百万(TPM)的转录本。b,su-dhl-4和su-dhl-10 dlbcl细胞在用三种CDK9抑制剂之一处理前18小时接种:eNitociclib(0.25或1μmol/L),atuveciclib(1μmol/L)或Kb-0742(1μ42(1μhol/l)。在4小时治疗后,洗涤细胞,孵育持续长达48小时。
在最近引入 CRISPR/Cas9 技术进行基因敲除、基因敲入、基因补充和内源基因标记之前,很少有基因工具可用于研究克氏锥虫。核糖开关是天然存在的自裂解 RNA(核酶),可被配体激活。我们实验室最近的研究结果证明了枯草芽孢杆菌中的 glmS 核酶可用于布氏锥虫的基因沉默,该核酶已被证明可控制响应外源葡萄糖胺的报告基因表达。在这项工作中,我们使用 CRISPR/Cas9 系统用活性(glmS)或非活性(M9)核酶对克氏锥虫糖蛋白 72(TcGP72)和液泡质子焦磷酸酶(TcVP1)进行内源性标记。通过 PCR 确认基因标记,并通过蛋白质印迹分析验证蛋白质下调。通过免疫荧光分析和体外生长定量进行进一步的表型表征。我们的结果表明,该方法成功地抑制了两种基因的表达,而无需培养基中的葡萄糖胺,这表明克氏锥虫在正常生长条件下产生足够水平的内源性葡萄糖胺 6-磷酸来刺激 glmS 核酶活性。该方法可用于敲除克氏锥虫中的必需基因并验证这种寄生虫中的潜在药物靶点。