背景:内收肌痉挛性发声障碍 (SD) 是一种导致说话困难的声带肌张力障碍。目前的标准治疗方法是反复注射肉毒杆菌毒素以削弱内收肌。我们试图用一种新疗法——深部脑刺激 (DBS) 来改善 SD 的潜在神经原因。目的:通过 I 期试验评估 DBS 在 SD 中的安全性并量化任何益处的大小。方法:六名患者接受了左腹中间核 (Vim) 丘脑 DBS,并被随机分配接受 3 个月的盲法 DBS“开”或“关”,然后进行交叉治疗。主要结果是盲法期间的生活质量和声音质量。患者继续接受开放式 DBS“开”。次要结果是治疗前和 1 年后的认知、情绪和生活质量比较。此试验已在 ClinicalTrials.gov 注册(NCT02558634)。结果:无并发症。每位患者报告称,在盲法 DBS“开启”和“关闭”时,生活质量均有所改善(P = 0.07),声音质量也有所改善(P = 0.06)。由于样本量较小,这种趋势没有达到统计学意义。次要结果显示,1 年后认知、情绪和生活质量均无差异。结论:这项 I 期随机对照试验证实,DBS 可安全地用于 SD 患者。尽管样本量较小,但盲法 DBS 显示出改善生活质量和客观声音质量的强烈趋势。小脑回路,而不是苍白球回路,似乎对声带的运动控制至关重要。
经颅聚焦超声刺激 (tFUS) 是一种非侵入性神经调节技术,与目前可用的非侵入性脑刺激方法(例如经颅磁刺激 (TMS) 和经颅直流电刺激 (tDCS))相比,它可以更深地穿透并以更高的空间分辨率(毫米级)调节神经活动。虽然有几项研究表明 tFUS 能够调节神经元活动,但尚不清楚它是否可以根据需要产生长期可塑性以修改电路功能,特别是在可塑性有限的成人脑回路中,例如丘脑皮质突触。在这里,我们证明经颅低强度聚焦超声 (LIFU) 刺激深层脑结构视觉丘脑(背外侧膝状体核,dLGN)会导致 NMDA 受体 (NMDAR) 依赖的突触传递长期抑制,该突触传递到成年雌雄小鼠的初级视觉皮层 (V1) 中的第 4 层神经元。这种变化并不伴随神经元活动的大幅增加,如使用 cFos 靶向重组活性群体 (cFosTRAP2) 小鼠系所观察到的,也不伴随小胶质细胞的激活,后者通过 IBA-1 染色进行评估。使用基于神经元膜内空化激发 (NICE) 超声神经调节理论的模型 (SONIC),我们发现超声处理后 dLGN 神经元的预测活动模式是状态依赖性的,其活动范围属于有利于诱导长期突触抑制的参数空间。我们的结果表明,非侵入性经颅 LIFU 刺激有可能恢复临界期后成人大脑丘脑皮质突触的长期可塑性。
人类大脑是发育过程中最复杂的结构。揭示特定神经网络的个体发生和内在组织可能是理解不同大脑区域生理病理方面的关键。皮质-丘脑和丘脑-皮质 (CT-TC) 回路处理和调节觉醒、睡眠和记忆等基本任务,它们的改变可能导致神经发育和精神疾病。据报道,这些病理会影响特定的神经群体,但也可能广泛改变生理连接,从而导致大脑网络生成、通信和功能失调。更具体地说,据报道,CT-TC 系统在影响高级大脑功能的疾病中受到严重影响,例如精神分裂症 (SCZ)、双相情感障碍、自闭症谱系障碍或癫痫。在这篇综述中,重点将放在 CT 的发展,以及用于揭示和理解其分子和细胞机制的模型上。除了动物模型之外,我们还将讨论先进的体外平台,例如源自人类多能干细胞的脑类器官,这些模型对于揭示人类神经网络的建立仍然至关重要。事实上,类器官和组装体是研究和加速 CT 发育及其功能障碍基础研究的独特工具。然后,我们将讨论最近的前沿贡献,包括计算机模拟方法,涉及在生理和病理条件下生成连接图的 CT-TC 回路的个体发生、规范和功能。
电动机丘脑在对主要运动皮层的感觉运动信息和项目的整合和调制中起着至关重要的作用。虽然运动皮层的电压功率谱变化已得到充分表征,但运动丘脑中的相应活性,尤其是宽带(有时称为高伽玛),尚不清楚。本研究的目的是表征15名受试者的手动运动中运动丘脑的光谱变化,该受试者接受了清醒的深脑刺激手术,靶向丘脑的腹侧中间核(VIM)核,以使震颤致残。我们分析了串行场电位记录的主体特异性低频振荡(<30 Hz)和宽带功率(以65-115 Hz频段捕获)的功率变化。与以前的研究一致,我们发现随着运动的低频振荡而广泛降低。重要的是,在大多数受试者中,我们还观察到宽带功率的显着增加,主要是在与估计的VIM区域相对应的下部记录位点。一个主题还执行了一个想象中的运动任务,在此任务中,低频振荡能力被抑制。这些电生理学变化可以用作丘脑功能映射,DBS靶向和闭环应用的生物标志物。
虽然丘脑底核中β频带振荡同步的过度爆发与帕金森病的运动障碍有关,但一直缺乏将这两种现象联系起来的合理机制。在这里,我们检验了以下假设:β爆发所表示的同步增加可能会损害基底神经节网络中的信息编码能力。为此,我们记录了18名帕金森病患者在执行提示的上肢和下肢运动时丘脑底核中的局部场电位活动。我们使用每次试验中基于局部场电位对要移动的肢体进行分类的准确性作为系统所掌握的有关预期动作的信息的指标。使用朴素贝叶斯条件概率模型的机器学习用于分类。局部场电位动态可以在执行之前准确预测预期动作,当提前知道要求的动作时,在命令提示之前,受试者工作特征曲线下面积为 0.80 0.04。α 频段局部场电位活动爆发,尤其是 β 频段局部场电位活动爆发,严重影响了对要移动的肢体的预测。我们得出结论,低频爆发,尤其是 β 频段的爆发,限制了基底神经节系统编码有关预期动作的生理相关信息的能力。当前的发现也很重要,因为它们表明,除了恢复性脑机接口应用中的力量控制外,局部丘脑底活动可能被解码以实现效应器选择。
在某些必需震颤(ET)的患者中,据报道,丘脑腹中间核的深脑刺激的有效性部分丧失,这可能是由于永久性刺激的习惯。这项研究的重点是随着时间的流逝,VIM局部势势(LFP)数据的演变,以评估基于丘脑活性的闭环治疗的长期可行性。我们使用Activa™PC + S(Medtronic Plc。允许同一区域的记录和刺激。特别注意描述LFP的演变,随着刺激的关闭后,手术后的3个月到24个月。We demonstrated a significant decrease in high-beta LFPs amplitude during movements inducing tremor in comparison to the rest condition 3 months after surgery (1.91 ± 0.89 at rest vs. 1.27 ± 1.37 µV 2 /Hz during posture/action for N = 8/10 patients; p = 0.010), 12 months after surgery (2.92 ± 1.75 at rest vs. 2.12 ± 1.78 µV n = 7/10患者的姿势/动作期间为2/Hz; p = 0.014)和手术后24个月(静止时为2.32±0.35 vs 0.75±0.78 µV 2/Hz 4/6患者的姿势/动作; p = 0.017)。在关闭刺激时表现出显着降低高βLFP振幅的患者中,在随访期间至少观察到了这一现象两次。尽管在诱导震颤过程中高βLFPS振幅的这种降低的程度可能会随着时间而变化,但这种运动的丘脑生物标志物可能长期用于闭环治疗。
1 英国伦敦国王学院生物医学工程与成像科学学院大脑发育中心;2 英国伦敦国王学院神经发育障碍中心;3 西班牙马德里理工大学 ETSI 电信生物医学图像技术中心;4 西班牙马德里生物工程、生物材料和纳米医学生物医学研究网络中心 (CIBER-BBN);5 比利时鲁汶天主教大学电气工程系 (ESAT/PSI);6 英国伦敦圣托马斯医院伦敦国王学院生物医学工程与成像科学学院生物医学工程系;7 英国伦敦国王学院法医与神经发育科学系;8 英国伦敦国王学院精神病学、心理学和神经科学研究所神经影像学系; 9 儿童神经科学、埃夫利娜伦敦儿童医院、盖伊和圣托马斯 NHS 基金会信托、伦敦、英国;10 伦敦帝国理工学院生物工程系、伦敦、英国
现代中枢神经系统肿瘤分类结合了遗传和组织学特征,以形成临床相关的综合诊断。1 以前仅根据放射学发现诊断和治疗的弥漫性内在性脑桥神经胶质瘤 (DIPG) 等病变现在可能需要活检才能获得准确诊断并确定临床试验资格。2,3 因此,神经外科医生需要提供安全、微创且经济高效的解决方案来获取适合分子分析的组织。脑干和丘脑等重要部位的病变通常难以通过开放式手术方法进入,需要高精度立体定向工具才能安全地进行活检。基于框架的立体定向历来是成功执行这些程序的黄金标准
摘要:背景:基底神经节信号的神经生理症状和行为生物标志物的景观是指的。基于感应的深脑刺激(DBS)的临床翻译还需要对丘脑下核(STN)内光谱生物标志物的解剖结构进行透彻的理解。目标:目的是系统地研究频谱地形,包括帕金森氏病(PD)患者的STN局部领域(LFP)中广泛的子带,并评估其对DBS临床反应的预测性。方法:使用多接触DBS电极的70例PD患者(130个半球)记录了STN-LFP。A comprehensive spatial characteriza- tion, including hot spot localization and focality estima- tion, was performed for multiple sub-bands (delta, theta, alpha, low-beta, high-beta, low-gamma, high-gamma, and fast-gamma (FG) as well as low- and fast high-fre- quency oscillations [HFO]) and compared to the clinical hot spot for rigidity response to DBS。建立了光谱生物标记图,并用于预测对DBS的临床反应。