摘要脑干,丘脑和纹状体在精神分裂症谱系障碍(SSD)患者中的相对作用在很大程度上是未知的。To determine whether topographical alterations of the brainstem, thalamus and striatum contribute to parkinsonism in SSD patients, we conducted structural magnetic resonance imaging (MRI) of SSD patients with (SSD-P, n = 35) and without (SSD-nonP, n = 64) parkinsonism, as defined by a Simpson and Angus Scale (SAS) total score of ≥ 4 and < 4, respectively,与健康对照相比(n = 20)。FreeSurfer V6.0用于分割四个脑干区域(髓质长肌,Pons,上小脑梗和中脑),尾状核,put骨和丘脑。与没有帕金森主义的患者相比,帕金森氏症患者的髓质长大(p = 0.01,错误发现率(FDR)校正)和壳核(P = 0.02,FDR校正)的体积相比。在整个患者样本中(n = 99),(a)髓质长卷和SAS总数(p = 0.034)和glabella salivation(p = 0.007)的得分与(b)Thalamic量和SAS总数(p = 0.033)和glabella-salivation(P = 0.00)(P = 0.00)(P = 0.007)(P = 0.007)(P = 0.007)(P = 0.00)(P = 0.007), 确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。 这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。确定了显着的负相关。这些结果表明,脑干和丘脑结构以及基于基础神经节的运动电路在SSD中帕金森主义的发病机理中起着至关重要的作用。
目的:通过分析脑活动来区分帕金森病静止性震颤和不同的自主手部运动。方法:我们重新分析了 6 名帕金森病患者的丘脑底核的脑磁图和局部场电位记录。数据是在停用多巴胺药物(Med Off)和服用左旋多巴(Med On)后获得的。使用梯度提升树学习,我们将时间段分类为震颤、握拳、前臂伸展或无震颤静止。结果:单独的丘脑底核活动不足以区分四种不同的运动状态(平衡准确度平均值:38%,标准差:7%)。相比之下,皮质和丘脑底核特征的组合可以实现更准确的分类(平衡准确度平均值:75%,标准差:17%)。与仅基于丘脑底活动的分类相比,添加单个皮质区域平均可将平衡准确度提高 17%。在大多数患者中,信息量最大的皮质区域是感觉运动皮质区域。Med On 和 Med Off 下的解码性能相似。结论:只要除了丘脑底活动外还监测皮质信号,电生理记录就可以区分几种运动状态。意义:通过结合皮质记录、皮质下记录和机器学习,自适应深部脑刺激系统可能能够特异性地检测震颤并对几种运动状态做出充分反应。2023 年国际临床神经生理学联合会。由 Elsevier BV 出版这是一篇根据 CC BY 许可开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
- 丘脑下核(STN)作为一种辅助治疗,以减少某些中等至晚期左旋多巴帕金森氏病(PD)的症状,这些症状未用药物充分控制。- 对内部果胶内部(GPI)的刺激是一种辅助疗法,可减少未通过药物充分控制的晚期左旋多巴帕金森氏病(PD)的某些症状。- 腹侧中间核(VIM)的非同侧丘脑刺激用于抑制上肢震颤。该系统旨在用于被诊断出患有必需震颤或帕金森氏震颤的患者,而不是由药物充分控制,并且震颤构成了重要的功能障碍。- 波士顿科学的深度脑刺激系统用于以下方式: - 丘脑下核(STN)作为一种辅助疗法,用于减少某些中度至晚期左旋多巴 - 反应性帕金森氏病(PD)的症状,这些症状是未充分控制的。
背景:丘脑的中央 (CM) 区域是深部脑刺激 (DBS) 治疗图雷特综合症 (TS) 的常见目标。然而,目前还没有标准的微电极记录或大刺激方法来区分 CM 丘脑与其他附近的结构和核。病例报告:我们在这里介绍了一个 TS DBS 中传统立体定向靶向失败的病例。术后局部场电位记录 (LFP) 显示的特征包括随意运动期间的 β 功率去同步和静息时丘脑皮质相位幅度耦合。这些发现表明 DBS 导线的位置不是最理想的,位于丘脑的腹侧中间 (VIM) 核,而不是预期的 CM 区域。由于初次手术后三个月抽搐严重程度量表没有临床改善,患者接受了导线修订手术。DBS 导线的轻微重新定位导致了截然不同的临床结果。之后,LFP 显示 beta 失同步减少以及丘脑皮质相位幅度耦合消失。随访临床访问记录了患者整体抽搐评分的改善。讨论:此案例提供了初步证据,表明将生理学与基于图谱的定位相结合可能会改善某些 Tourette DBS 病例的预后。需要更大规模的前瞻性研究来证实这些发现。亮点:本报告展示了一例中心核区域深部脑刺激 (DBS) 失败的病例。我们观察到 DBS 手术几个月后抽搐改善不理想,随后的导线修订改善了结果。神经生理学提供了一个重要线索,表明 DBS 导线放置不理想的可能性。在导线修订期间重复 LFP 显示 beta 失同步减少以及丘脑皮质相位幅度耦合消失。在双侧 DBS 导线修订期间稍微重新定位后抽搐结果有所改善。此案例提供了初步证据支持使用生理学来增强 Tourette DBS 病例的基于图谱的定位。
目的 用于预测 MRgFUS 丘脑切开术成功可能性的关键指标之一是整体颅骨密度比 (SDR)。然而,这一指标并不能完全预测所需的超声处理参数或技术成功率。作者旨在评估其他可能有助于技术成功的颅骨特征。方法作者回顾性研究了 2017 年至 2021 年期间在其中心接受 MRgFUS 治疗的连续特发性震颤患者。他们评估了不同治疗参数(特别是最大功率和输送能量)与一系列患者颅骨指标和人口统计数据之间的相关性。机器学习算法被用于研究是否可以仅从颅骨密度指标预测超声处理参数,以及将局部换能器 SDR 与整体颅骨 SDR 相结合是否会提高模型准确性。结果 共纳入 62 名患者。平均年龄为 77.1(SD 9.2)岁,78% 的治疗(49/63)发生在男性身上。平均 SDR 为 0.51(SD 0.10)。在评估的指标中,SDR 与治疗中使用的最大功率(ρ = −0.626,p < 0.001;局部 SDR 值 ≤ 0.8 组的比例也有 ρ = +0.626,p < 0.001)和最大能量传输(ρ = −0.680,p < 0.001)的相关性最高。机器学习算法对预测局部和整体 SDR 所需的最大功率和能量具有中等能力(最大功率的准确度约为 80%,最大能量的准确度约为 55%),对预测局部和整体 SDR 达到的平均最高温度具有很高的能力(准确度约为 95%)。结论 作者将一系列颅骨指标与 SDR 进行了比较,结果表明,SDR 单独使用时是治疗参数的最佳指标之一。此外,还提出了许多其他机器学习算法,可在获得更多数据时进行探索以提高其准确性。还应确定和探索与最终超声处理参数相关的其他指标。
丘脑底核 (STN) 的深部脑刺激 (DBS) 是治疗帕金森病 (PD) 运动症状的有效方法。然而,介导症状缓解的神经元素尚不清楚。先前的研究得出结论,直接光遗传学激活 STN 神经元对于缓解帕金森病症状既不是必要的也不是充分的。然而,用于细胞特异性激活的通道视紫红质-2 (ChR2) 的动力学太慢,无法跟上有效 DBS 所需的高速率,因此 STN 神经元的激活对 DBS 治疗效果的贡献仍不清楚。我们使用超快视蛋白 (Chronos) 量化了单侧 6-羟基多巴胺 (6-OHDA) 损伤后雌性大鼠的光遗传学 STN DBS 对行为和神经元的影响。 130 pps 的光遗传 STN DBS 减少了病理性旋转并改善了前肢踏步缺陷,类似于电 DBS,而使用 ChR2 的光遗传 STN DBS 不会产生行为效应。与电 DBS 一样,光遗传 STN DBS 表现出对刺激率的强烈依赖性;高刺激率可缓解症状,而低刺激率无效。高刺激率光遗传 DBS 可增加和减少 STN、苍白球外部 (GPe) 和黑质网状部 (SNr) 中单个神经元的放电率,并破坏 STN 和 SNr 中的 b 波段振荡活动。高速率光遗传学 STN DBS 确实可以通过减少 STN 相关神经回路中的异常振荡活动来改善帕金森病运动症状,这些结果强调了视蛋白的动力学特性对光遗传学刺激的效果有很大影响。
这篇早期发布的文章已经过同行评审并被接受,但尚未经过撰写和编辑过程。最终版本在风格或格式上可能略有不同,并将包含指向任何扩展数据的链接。
丘脑底核 (STN) 和苍白球内核 (GPi) 的深部脑刺激 (DBS) 是治疗帕金森病运动症状的有效方法。尽管其治疗机制尚不清楚,但有研究表明,初级运动皮层 (M1) 的反向激活在介导其治疗效果方面起着重要作用。本研究检验了以下假设:M1 的反向激活是 STN 和 GPi DBS 治疗效果的一个显著特征。使用高密度微电极阵列在两只帕金森病非人类灵长类动物中记录了 M1 中的单元活动,每只动物都植入了针对 STN 和 GPi 的 DBS 导线。每个 DBS 靶标的刺激都有类似的治疗效果,但是,仅在 STNDBS 期间观察到 M1 的反向激活。尽管接受 STN DBS 的两只动物均具有相似的有益效果,但每种动物中反向分类细胞的比例不同,分别为 30% 和 6%。在连续 4 小时的 STN DBS 中,反向激活变得不那么强烈,而治疗效果却得以保持。尽管反向激活随着时间的推移而减弱,但在整个 4 小时内,M1 自发尖峰的同步显着降低。虽然我们不能至少在 STNDBS 的急性期忽略反向 M1 激活的潜在治疗作用,但动物和目标部位之间观察到的反向激活的差异引发了对其假设作用作为 DBS 治疗效果的主要机制的疑问。这些结果进一步支持了 M1 水平同步性的降低是 DBS 治疗效果的重要因素。
1临床医学研究所,I.M.Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; zolnikova_o_yu@staff.sechenov.ru(O.Z. ); dzhakhaya_n_l@staff.sechenov.ru(n.d。); bueverova_e_l@staff.sechenov.ru(E.B. ); sedova_a_v@staff.sechenov.ru(A.S。); kurbatova_a_a@staff.sechenov.ru(a.k. ); chekulaev_p_a@student.sechenov.ru(p.c.) 2公共卫生研究所,I.M. Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ruSechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; zolnikova_o_yu@staff.sechenov.ru(O.Z.); dzhakhaya_n_l@staff.sechenov.ru(n.d。); bueverova_e_l@staff.sechenov.ru(E.B.); sedova_a_v@staff.sechenov.ru(A.S。); kurbatova_a_a@staff.sechenov.ru(a.k.); chekulaev_p_a@student.sechenov.ru(p.c.)2公共卫生研究所,I.M. Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ru2公共卫生研究所,I.M.Sechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B. ); izotov.alexander.ibmc@gmail.com(a.i. ); likulikova@mail.ru(L.K.) 4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ruSechenov第一莫斯科州立医科大学(Sechenov大学),俄罗斯莫斯科11991; Kryuchkova_k_yu@staff.sechenov.ru 3生物医学化学研究所,生物群体,俄罗斯莫斯科109028; t.butkova@gmail.com(T.B.); izotov.alexander.ibmc@gmail.com(a.i.); likulikova@mail.ru(L.K.)4生物学数学问题RAS的数学问题 - 俄罗斯科学学院应用数学研究所的分支,142290,俄罗斯Pushchino,俄罗斯5个州研究中心 - 俄罗斯123098 Moscow,Burnasyan Federalan联邦联邦医学生物物理学中心,俄罗斯123098,俄罗斯; ks_yurku@mail.ru *通信:zaborova_v_a@staff.sechenov.ru
本研究介绍了一种噪声消除技术,用于 MER 机器通过丘脑底核深部脑刺激/或刺激器 (STN-DBS) 在局部场电位 (LFP) 中进行电刺激获取的丘脑底核 (STN) 神经元微电极信号。我们提出了一种新方法,用于消除由不同于典型 LFP (低频电位) 信号的脉冲发生器触发的诱导刺激伪影。该方法经过处理和准确性测试,并计算用于体外状态的执行。结果表明,该方法可以很好地抑制刺激伪影。并且还在帕金森病 (PD) 受试者 (患者) 的体内状态下进行了测试。它用于处理从 PD 手术中收集的 LFP 信号,以初步探索 STN、DBS 参数 (刺激强度、刺激电压、频率和幅度脉冲宽度) 内 beta 波段同步变化的定量依赖性。研究结果表明,DBS 过程可以克服过度的β频率(30Hz)活动,并且随着 DBS 电流在 1-3V 范围内增加,刺激频率在 60-120Hz 范围内增加,减少程度也随之增加。该方法为探索诱导电刺激对帕金森脑活动的即时效果提供了科学研究和技术支持,并可作为未来技术的研究工具。
