摘要 非酒精性脂肪性肝病(NAFLD)是2型糖尿病(T2DM)患者的常见病。本研究评估了达格列净对T2DM和NAFLD患者肝脏脂肪含量的影响。分析了生化数据和代谢参数的变化。回顾性收集2022年6月至2022年12月接受达格列净治疗的T2DM和NAFLD患者的临床资料。最终分析共纳入35例患者,平均年龄45.8±2.2岁,其中男性患者占60.0%。达格列净治疗20周后,患者糖尿病参数改善,血糖和糖化血红蛋白A1C水平显著下降(P<0.01),胰岛素抵抗改善。定量计算机断层扫描评估肝脏脂肪含量的变化,结果显示治疗后从 16.1±2.2% 下降至 11.2±1.3%(P<0.01)。肝功能(丙氨酸氨基转移酶、天冬氨酸氨基转移酶和 γ -谷氨酰转移酶水平)也有所改善。治疗后内脏脂肪面积和皮下脂肪面积明显减少,内脏脂肪面积减少更为明显。通过 Pearson 相关性和回归分析确定与肝脏脂肪含量相关的因素。Pearson 相关性分析表明,治疗后肝脏脂肪含量的下降与体重变化(r=0.642,P=0.033)、稳态指数
PCR 检测呈阳性的参与者被视为病例,其他参与者被视为对照。使用倾向评分 (PS) 匹配来匹配病例和对照,其中病例的 PS 来自逻辑回归,其中包括参与者的年龄组、性别、种族/民族、酒精、体重指数、糖尿病、当前吸烟情况、酒精使用障碍识别测试-简明版 (AUDIT-C) 评分、肝硬化合并症指数、高血压、慢性阻塞性肺病、Child-Pugh 评分、位置、基线实验室结果(丙氨酸氨基转移酶、血小板计数、肌酐、总胆红素、国际标准化比率和终末期肝病模型-钠 (MELD-Na))和 COVID-19 检测月份。社区中的变异比例来自疾病控制中心每周的基因组监测数据。 8 定义了三个时期:alpha 主导时期,从 2021 年 2 月 1 日至 2021 年 7 月 25 日;Delta 主导时期,从 2021 年 7 月 26 日至 2021 年 12 月 24 日;Omicron 主导时期,从 2021 年 12 月 25 日至 2022 年 1 月 21 日。通过逻辑回归模型检查了 mRNA 疫苗在预防 COVID-19 感染方面的有效性。该模型包括一个分类变量,表示最
AASLD 美国肝病研究协会 ALT 丙氨酸氨基转移酶 AST 天冬氨酸氨基转移酶 BCT BC 移植 CBC 全血细胞计数 CMV 巨细胞病毒 CNI 钙调磷酸酶抑制剂 CT 计算机断层扫描 DCD 循环死亡后捐献 EBV 爱泼斯坦-巴尔病毒 ERCP 内镜逆行胰胆管造影 GI 胃肠道 HBcAb 乙型肝炎核心抗体 HBIG 乙型肝炎免疫球蛋白 HBsAb 乙型肝炎表面抗体 HBsAg 乙型肝炎表面抗原 HBV 乙型肝炎病毒 HCC 肝细胞癌 HCV 丙型肝炎病毒 HCV Ab 丙型肝炎病毒抗体 HDV 丁型肝炎病毒 HE 肝性脑病 HIV 人类免疫缺陷病毒 HIV Ab 人类免疫缺陷病毒抗体 ICU 重症监护病房 IgG 免疫球蛋白 G IM 肌肉注射 INR 国际标准化比率 IV 静脉注射终末期肝病 MELD 模型 终末期肝病 MELD-Na 钠模型 MIBI 心肌灌注成像 MRI 磁共振成像 NP 执业护士 OR 手术室 PNF 原发性无功能 PO 一次口服 PO BID 每天口服两次 PTN 病人转移网络 TB 结核病 VGH 温哥华总医院
肝细胞癌是全球第四大恶性肿瘤,是肝脏类癌症的主要原因,到 2030 年,每年将导致 100 多万人死亡 [1]。急性肝炎和急性肝衰竭是最严重的疾病,需要通过释放 IL-6、TNF-α 和升高的丙氨酸氨基转移酶、天冬氨酸氨基转移酶、碱性磷酸酶和甲胎蛋白进行早期诊断,这些酶会导致健康肝脏发展为脂肪肝(称为脂肪变性),然后发生炎症,导致肝细胞癌 [2]。大多数 HCC 病例是由 HCV 和 HBV 等病毒、糖尿病和肥胖、酒精相关疾病、非酒精相关疾病、致癌物(如黄曲霉毒素化合物)引起的 [3]。HCC 是最常见的癌症,由于 HCV 和 NLFD 的死亡率,其在癌症中的死亡率很高。在巴基斯坦,HCC 的发生率很高,这是因为 HCV 的流行和死亡率很高 [4]。肝癌的主要治疗方法是化疗、放疗、移植和手术。由于大多数病例诊断时已是晚期,无法进行手术,药物是肝癌的唯一治疗方法 [5]。大多数肝癌患者对药物的耐药性越来越强。药物治疗是无法进行手术的患者的最佳选择。肝癌通常对化疗药物产生耐药性,因为这会阻碍肝癌治疗。近年来,靶向药物和免疫检查点抑制剂被引入治疗 [6]。
我们在这项工作中介绍了Emle-Engine软件包 - 用于混合机器学习潜力 /分子力学(ML / MM)动力学模拟的新机器学习嵌入方案的实施。该软件包是基于一种嵌入方案,该方案使用基于物理的电子密度模型和诱导模型,并具有少数可调参数,这些参数衍生在要嵌入的子系统的真空属性中。该方案完全独立于真空电位,仅需要机器学习子系统原子的位置以及分子力学环境的位置和部分电荷。这些特征允许现有QM/mm软件中使用EMLE引擎。我们证明实施的静电机学习嵌入方案(命名EMLE)在增强的采样分子动力学模拟中是稳定的。通过计算水中丙氨酸二肽的自由能表面,具有两个不同的ML真空电位和两个嵌入模型的ML选项,我们测试了EMLE的影响。与参考DFT/MM表面相比,EMLE嵌入显然优于基于固定部分电荷的MM。与MM嵌入相比,通过电子密度的构型依赖性和感应能量的包含,通过电子密度的构型依赖性和感应能量的包含来导致自由能表面平均和最大误差的系统降低。
肽是治疗诊断开发的理想选择,因为它们能够快速在目标组织中积累、快速从背景组织中清除,并表现出良好的组织穿透性。之前,我们开发了一系列表现出谨慎折叠倾向的新型肽,从而获得了最佳候选物 [ 68 Ga]Ga-DOTA- GA1 ([D-Glu] 6 -Ala-Tyr- N MeGly-Trp- N MeNle-Asp-Nal-NH 2 ),其对胆囊收缩素 2 受体 (CCK 2 R) 的结合亲和力为 50 pM。然而,我们面临着肾脏摄取率过高的挑战。方法:对主要的治疗诊断候选物进行了构效关系研究。对肽支架进行了审慎的结构修饰,以评估特定 N 端残基对整体生物活性的贡献。然后在带有转染的 A431-CCK 2 肿瘤的裸鼠中评估最佳候选药物,并体外定量它们的生物分布。结果:我们鉴定并证实 D-Glu 3 替换为 D-Ala 3 产生了 2 个最佳候选药物,[ 68 Ga]Ga-DOTA- GA12 和 [ 68 Ga]Ga-DOTA- GA13 。这些放射性肽表现出高靶标/背景比、增强的肿瘤保留、血浆和小鼠器官匀浆中的优异代谢稳定性以及肾脏摄取降低 4 倍,明显优于非丙氨酸对应物。结论:我们的研究确定了针对 CCK 2 R 的新型放射性药物候选药物。它们的高肿瘤摄取和减少的肾脏蓄积值得临床转化。
本研究旨在确定鸭子单剂量口服 10、50 和 100 mg/kg 恩诺沙星对生化参数的影响。研究对象为 18 只鸭子。将鸭子分成 3 组,分别接受 10、50 和 100 mg/kg 的剂量。分别在 0、6、12、24 和 48 小时采集血样。给鸭子服用恩诺沙星后未观察到临床副作用。比较剂量组时,发现天冬氨酸氨基转移酶 (AST)、丙氨酸氨基转移酶 (ALT)、γ-谷氨酰转移酶 (GGT)、白蛋白 (ALB)、胆固醇 (CHOL)、总蛋白 (TP) 和肌酐 (CRE) 值存在显著差异 (p<0.05)。然而,这些差异在 48 小时后恢复正常。各剂量组间 ALT、GGT、CHOL、甘油三酯和尿素值无差异(p>0.05)。但 10 mg/kg 剂量下 AST、ALP、ALB 和 CRE 值、50 mg/kg 剂量下 AST 值和 100 mg/kg 剂量下 TP 值存在显著差异(p<0.05)。综上所述,鸭子口服恩诺沙星 10、50 和 100 mg/kg 剂量会引起生化参数的暂时变化。本研究仅给予恩诺沙星一次。但考虑到在细菌感染的情况下重复使用恩诺沙星,应注意鸭子可能出现的不良反应。
目标。目前可用的药物在支持受伤的肝细胞的再生方面几乎没有提供。先前的实验研究表明,白藜芦醇和二甲双胍,AMP激活蛋白激酶(AMPK)和SIRTUIN 1(SIRT1)的特异性激活剂较少,可以有效地减弱急性肝损伤。这项实验研究的目的是阐明AMPK和SIRT1活性的调节是否可以改变药物/扑热息痛(APAP)诱导的肝细胞损伤体外。方法。原发性大鼠肝细胞通过特定的合成激活剂和SIRT1和AMPK的抑制剂的相互组合预处理,然后是毒性剂量的APAP。在培养结束时,收集了培养基样品,以对丙氨酸 - 氨基转移酶和亚硝酸盐水平进行生化分析。肝细胞生存力,硫巴比妥的反应性物质,SIRT1和AMPK活性以及蛋白质表达。结果。APAP的有害作用与AMPK和SIRT1活性降低以及蛋白质的脱位有关,以及肝细胞中氧化应激的增强。添加AMPK激活剂(AICAR)或SIRT1激活剂(CAY10591)显着减弱了AMPK抑制剂(化合物C)对APAP肝毒性的有害作用。此外,CAY10591但没有明显降低APAP与SIRT1抑制剂(EX-527)的有害作用。结论。我们的发现表明,AMPK活性的降低与APAP的肝毒性作用有关,这可能会通过SIRT1激活剂的给药而大大减弱。这些发现表明,AMPK和SIRT1活性的差异调节可能会在未来提供有趣且新颖的治疗机会来对抗肝细胞损伤。
缩写:AASLD,美国肝病研究协会;ALT,丙氨酸氨基转移酶;ASO,反义寡核苷酸;CAM,衣壳组装调节剂;cccDNA,共价闭合环状DNA;ChAdOx1-HBV/MVA-HBV,编码多种 HBV 抗原的黑猩猩腺病毒和改良痘苗安卡拉病毒载体;CHB,慢性乙型肝炎感染;EASL,欧洲肝脏研究协会;ETV,恩替卡韦;GalNac 共轭 LNA SSO,N-乙酰半乳糖胺共轭锁核酸单链寡核苷酸;HBcrAg,乙型肝炎核心相关抗原;HBeAg,乙型肝炎 BE 抗原;HBsAg,乙型肝炎表面抗原;HBV,乙型肝炎病毒;HCC,肝细胞癌;IFN,干扰素; MDSC,髓系抑制细胞;NA,核苷(酸)类似物;NAP,核酸聚合物;NK 细胞,自然杀伤细胞;NTCP,牛磺胆酸钠共转运多肽;PD-1,程序性死亡受体-1;PDL-1,程序性细胞死亡配体-1;pegIFN α,聚乙二醇化干扰素α;pgRNA,前基因组RNA;siRNA,小干扰RNA;STOP,S-抗原运输抑制寡核苷酸聚合物;TAF,替诺福韦艾拉酚胺;TCR,T 细胞受体;TDF,富马酸替诺福韦二吡呋酯;TGF,转化生长因子;TLR,Toll 样受体。
3R 减少/改进/替换 AC 咨询委员会 ADA 抗药抗体 ADCC 抗体依赖性细胞介导的细胞毒性 ADME 吸收、分布、代谢和排泄 ADR 药物不良反应 AE 不良事件 AESI 特别关注的不良事件 ALC 绝对淋巴细胞计数 ALP 碱性磷酸酶 ALT 丙氨酸氨基转移酶 ANC 绝对中性粒细胞计数 aPTT 活化部分凝血活酶时间 ASCO 美国临床肿瘤学会 AST 天冬氨酸氨基转移酶 ATC 解剖治疗化学 BICR 盲法独立中央审查 BLA 生物制品许可申请 BMI 身体质量指数 BOR 最佳总体反应 BPCA 最佳儿童药品法案 BRF 效益风险框架 BTD 突破性疗法认定 CBER 生物制品评估与研究中心 C avg 平均浓度 CBC 全血细胞计数 CDC 补体依赖性细胞毒性 CDER 药物评估与研究中心 CDRH 设备和放射健康中心 CDTL 跨学科团队负责人 CFR 联邦法规 CI 置信区间 CL清除率 CL ss 稳态清除率 C max 最大浓度 CMC 化学、制造和控制 C min 最低浓度 CNS 中枢神经系统 COA 临床结果评估 COSTART 不良反应术语词典编码符号 CR 完全缓解