同源重组介导的基因组编辑,也称为基因靶向(GT),是一种必不可少的技术,允许对目标序列进行精确的修改,包括引入点突变,报告基因的敲入和/或交换功能域。然而,由于其低频,很难建立可以广泛应用于大量植物物种的GT方法。我们开发了一种简单且通用的定期间隔短的短粒子重复序列(CRISPR)/CRISPR相关的蛋白9(CAS9)介导的DNA双重链突破(DSB)诱导的GT系统,使用包含CRIS CRIS/CAS9表达构造的多一对矢量,可供选择的标记和GT Donor donor donor template。该系统启用了具有不可选择的特征的目标点突变,以大米和烟草中的几个靶基因。可以精确地使用该系统评估内源性靶基因的GT频率,因此我们研究了用RAD51刺激化合物1(RS-1)处理对DSB诱导GT频率的治疗的影响。GT频率略有但始终如一,通过RS-1处理在两个目标植物中都得到了改善。
CES 2020 年 9 月 20 日至 26 日 经济研究中心 (CES) 的研究项目进行了广泛的经济分析,以改进美国人口普查局的统计项目。其中许多分析都以 CES 研究论文的形式发表。这些论文未经过人口普查局出版物所对应的审查,因此不应推断为认可。本文表达的任何观点和结论均为作者的观点和结论,并不一定代表美国人口普查局的观点。所有结果均经过审查,确保未泄露任何机密信息。全部或部分转载必须得到作者批准。要获取有关该系列的信息,请访问 www.census.gov/ces 或联系美国人口普查局经济研究中心讨论文件编辑 Christopher Goetz,地址:5K038E,4600 Silver Hill Road,华盛顿特区 20233,电子邮箱:CES.Working.Papers@census.gov。要订阅该系列,请单击此处。
摘要 — 多通道校准对于检测移动目标并准确估计其位置和速度至关重要。本文介绍了一种快速有效的沿轨多通道系统校准算法,特别是针对时空自适应处理 (STAP) 技术。所提出的算法校正了接收通道的相位和幅度偏移,还考虑了沿斜距和方位角时间的多普勒质心变化(例如由大气湍流引起)。多普勒质心变化的知识对于准确的杂波协方差矩阵估计尤其重要,这是 STAP 有效抑制杂波所必需的。重要的校准参数和偏移量直接从距离压缩训练数据中估计。基于使用 DLR 机载系统 F-SAR 获取的真实多通道 X 波段雷达数据对所提出的算法进行了评估,并与最先进的数字通道平衡技术进行了比较。实验结果表明,所提出的校准算法在实时应用中具有潜力。
C. 参数和变量 A 水库能量水平。cop P2H 性能系数。EL 电力需求。G 天然气能量。GC 设施的天然气消耗量。GL 天然气需求。GP 设施的天然气产量。H 热能。HL 热需求。HP 设施的热量产量。IE 电力需求变化的激励率。IH 热需求变化的激励率。M 足够大的数字。P 输出功率。RU,RD 上升/下降速率限制。sug,sdg 启动和关闭成本。SU,SD 启动和关闭燃料消耗。VOC 压缩机的运行和维护成本。VOE 膨胀机的运行和维护成本。I 表示设施状态的二元变量。Γ 不确定性预算。π 每种情景的概率。λ 批发能源市场价格。ζ MER 和 MEC 之间的合同价格。α DRP 中的需求参与率。η 充电/放电效率。 γ , β , m 稳健模型的对偶变量。τ 损失,τ 增益 热能损失系数。∆ E 执行 DRP 后电力需求发生变化。∆ H 执行 DRP 后热需求发生变化。
我们从理论上研究了手性波导中光子的少体和多体动力学。特别是,我们研究了脉冲通过手性耦合到波导的 N 个两级系统集合的传播。我们表明,该系统支持相关多光子束缚态,这些束缚态具有明确定义的光子数 n,并以 1 =n 2 的群延迟比例在系统中传播。这产生了一个有趣的结果,即在传播过程中,入射相干态脉冲会分解为不同的束缚态分量,这些分量可以在足够长的系统中在输出端空间分离。对于足够多的光子和足够短的系统,我们表明 n 体束缚态的线性组合恢复了自诱导透明中众所周知的平均场孤子现象。因此,我们的工作涵盖了从少光子量子传播到真正的量子多体(原子和光子)现象以及最终的量子到经典跃迁的整个范围。最后,我们证明束缚态可以与额外的光子发生弹性散射。总之,我们的结果表明,光子束缚态是真正独特的物理对象,它来自光子和两级发射器之间最基本的光物质相互作用。我们的工作为在手性波导 QED 中研究量子多体物理和光子孤子物理打开了大门。
着丝粒提出了一个进化悖论:功能高度保守,但序列和结构却迅速变化。然而,在没有损伤的情况下,着丝粒的位置通常在一个物种内是保守的。我们在此报告,致病酵母菌种近平滑假丝酵母的分离株在其八条染色体中的两条染色体上表现出着丝粒位置的种内多态性。它的旧着丝粒具有反向重复 (IR) 结构,而其新着丝粒没有明显的结构特征,但位于旧位置的 30 kb 以内。因此,着丝粒可以自然地从一个染色体位置移动到另一个染色体位置,似乎是自发的,并且在 DNA 序列没有任何显著变化的情况下。我们的观察结果与所有着丝粒都是由基因决定的模型相一致,例如由短或长 IR 的存在或形成十字形的能力决定。我们还发现着丝粒已成为 C. parapsilosis 进化枝中基因组重排的热点。
摘要:癌症是全球主要死亡原因之一。尽管过去几十年癌症治疗方法取得了长足发展,但化疗仍然是癌症治疗的主要方法。根据作用机制,常用化疗药物可分为几类(抗代谢物、烷化剂、有丝分裂纺锤体抑制剂、拓扑异构酶抑制剂等)。多药耐药 (MDR) 是接受传统化疗或新型靶向药物治疗的癌症患者中 90% 以上死亡的原因。MDR 的机制包括外来化合物代谢增加、药物通量增强、生长因子、DNA 修复能力增强以及遗传因素(基因突变、扩增和表观遗传改变)。越来越多的生物医学研究集中于设计能够逃避或逆转 MDR 的化疗药物。本综述的目的不仅在于展示细胞对目前临床治疗中使用的抗癌药物产生耐药机制的最新数据,还在于介绍旨在克服这些耐药机制的新型潜在抗肿瘤药物的作用机制。更好地了解 MDR 机制和新型化疗药物的靶点应为未来有关癌症治疗新有效策略的研究提供指导。
多热效应是指在同时或依次施加或去除外部刺激的情况下,材料的温度或熵发生变化。其前提条件是材料具有多种铁性状态。但很少有报道直接测量这种效应。现在,出于这个原因,我们构建了一个测量装置,可以同时确定脉冲磁场和单轴载荷影响下的绝热温度变化。我们选择全 d 金属 Heusler 合金 Ni-Mn-Ti-Co 进行首次测试,因为它具有增强的机械性能和巨大的磁热效应和弹热效应。Ni-Mn-Ti-Co 暴露于高达 10 T 的脉冲磁场和高达 80 MPa 的单轴应力,并测量相应的绝热温度变化。利用我们的新实验工具,我们能够更好地了解多热材料并确定它们对不同刺激的交叉耦合响应。
较早的一代住宅太阳能系统与逆变器相关,后者将电源从太阳能电池板转换为阳光数小时的电源。超额电源可以卖回公用事业公司,但是在黑暗的几个小时内,最终用户仍然必须依靠公用事业来供电。公用事业公司能够通过调整其定价模型并将住宅客户调整到“使用时间”费率来利用这些限制,从而在没有太阳能时收取更多费用。将ESS添加到系统中,使用户能够通过所谓的“剃须刀”来对抗并保护自己免受高能源成本的影响,并将其太阳能电池板收集的电力存储在电池中,并使用这些电池随时提供电力需求。电池技术的发展导致了锂离子(锂离子)电池组的生产,其单位质量和单位量的充电存储量比较旧的技术铅酸电池高得多。结合有效的双向功率转换系统,这些系统可用于在3至12千瓦的范围内创建紧凑的壁挂式ESS单元,能够提供24小时或更长时间的房屋。,尽管具有能量密度优势,但锂离子电池有一些缺点,尤其是在安全方面,包括在高压下过热或损坏的趋势。这可能会导致热失控和燃烧,因此需要安全机制来限制电压和内部压力。存储容量由于老化而导致多年操作后最终失败而导致存储容量也会恶化。因此,每个电池组都必须包括电子电池管理系统(BMS),以确保安全有效的操作。与太阳逆变器不同,ESS必须以两种不同的模式运行:1。充电模式,电池充电2。备用模式,当电池为此提供连接负载的电源时,ESS电源转换系统始终是双向的。与太阳能电池板相结合的住宅ESS被广泛分为DC或AC耦合系统。在DC耦合系统中,单个混合逆变器结合了双向电池转换器的输出和DC-DC太阳能MPPT(最大功率点跟踪)在通用的直流总线上,然后提供网格绑定的逆变器阶段。但是,AC耦合系统(有时称为“ AC电池”)变得越来越流行,因为这种类型的ESS可以很容易地添加到本来已经存在的太阳能安装中,该安装原本不包括储能。这是因为AC耦合ESS直接与网格绑定。另一个优势是可以轻松地平行此类系统以提供更大的功率能力和存储能力。
早期的住宅太阳能系统通过逆变器与公用电网相连,逆变器在日照时间内将太阳能电池板的电力转换为交流电。多余的电力可以卖回给公用事业公司,但在黑暗时期,最终用户仍然必须依靠公用事业公司提供电力。公用事业公司已经能够利用这些限制,通过调整定价模式,将住宅客户转移到“使用时间”费率,从而在太阳能不可用时收取更多费用。在系统中添加 ESS 使用户能够应对这种情况,并通过所谓的“削峰”保护自己免受高昂的能源成本,将太阳能电池板收集的电力存储在电池中,并随时使用这些电池满足他们的电力需求。电池技术的发展导致了锂离子 (Li-ion) 电池组的生产,其单位质量和单位体积的电荷存储量比旧技术的铅酸电池高得多。结合高效的双向电源转换系统,这些电池可用于创建 3 至 12 千瓦范围内的紧凑型壁挂式 ESS 装置,能够为家庭供电 24 小时或更长时间。然而,尽管锂离子电池具有能量密度优势,但它们也有一些缺点,特别是在安全性方面,包括在高电压下容易过热或损坏。这可能会导致热失控和燃烧,因此需要安全机制来限制电压和内部压力。存储容量也会因老化而降低,导致运行几年后最终出现故障。因此,每个电池组都必须包含一个电子电池管理系统 (BMS),以确保安全高效的运行。与太阳能逆变器不同,ESS 必须在两种不同的模式下运行:1. 充电模式,即电池正在充电时 2. 备用模式,即电池为连接的负载供电时 因此,ESS 电源转换系统始终是双向的。与太阳能电池板结合的住宅 ESS 大致分为直流或交流耦合系统。在直流耦合系统中,单个混合逆变器将双向电池转换器和 DC-DC 太阳能 MPPT(最大功率点跟踪)级的输出组合在公共直流总线上,然后为并网逆变器级供电。然而,交流耦合系统(有时称为“交流电池”)正变得越来越流行,因为这种类型的 ESS 可以轻松添加到现有的太阳能装置中,而这些装置最初不包括能量存储。这是因为交流耦合 ESS 直接连接到电网。另一个优点是,这种系统可以轻松并联以提供更大的功率和存储容量。