最早的船只肯定是由人力推动的,但很明显,风具有重要的夹带作用,风帆的起源是风向越大,推力就越大。有证据表明,公元前 5000 年,中东就出现了帆船和木桨,公元前 3000 年,在古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
我们分析了将月球传感器测量结果与地月空间传感器在地月拉格朗日点 1 晕轨道上融合的轨道质量性能优势。假设了十几种传感器架构来量化跟踪不同系列地月目标的轨迹估计误差。我们使用了各种几何视角以及仅角度和距离测量。使用无迹卡尔曼滤波器处理度量观测值,底层动力学模型由圆形限制三体运动方程组成。整体轨道质量性能以惯性位置、速度和加速度估计误差的平均值和标准差来表示。结果表明,由四个中纬度窄视野仅角度观察者组成的月球传感器架构可以保持 100% 的轨道保管。对所有地月目标的平均位置 RSS 误差均低于 1 公里。我们发现,增加一个仅基于太空的角度观测者可将平均位置估计 RSS 误差降低五倍。总体而言,最佳架构性能组合包含基于月球和基于太空的角度和范围观测。
裂变反应堆,通常是压水式(PWR),总是通过蒸汽涡轮机(它们类似于外燃机)。第一艘船肯定是由手工推动的,但很明显,风具有重要的夹带作用,并且锋面越大,推力就越大,这就是帆的起源。有证据表明,中东早在公元前 5000 年就出现了帆船和木桨,而在公元前 3000 年的古埃及,尼罗河是主要的运输路线,利用水流顺流而下,利用盛行的北风逆流而上。航行(顺风除外)需要对各种风况和海况有丰富的了解,有时还需要非凡的洞察力(例如如何返回港口):大航海时代的两位先驱,大西洋上的哥伦布和太平洋上的乌达内塔,都利用低纬度的东风(信风)和中纬度的西风,以及一般的海洋环流(北半球顺时针),将遥远的大陆人口联系起来,建立永久的贸易路线。目前,大多数水上交通工具(与任何其他类型的陆地、空中或太空交通工具一样)都由储存在船上的液体燃料和热机提供动力,热机将该燃料与氧化剂燃烧的化学能转化为实际执行推进工作所需的机械能。因此,到最后
摘要。充满持久的火山喷发通过气体排放和气溶胶的亚地区产生影响气候。以前的研究,无论是建模还是观察性,都努力量化这些影响并解开它们的自然变异性。然而,由于大型和观察到的火山喷发的稀缺性,我们的理解仍然很斑驳。在这里,我们使用地球系统模型来研究对高纬度,富有兴趣的火山喷发的气候反应,类似于冰岛的2014 - 2015年冰岛冬季爆发,这是喷发季节和大小的函数。结果表明,气候响应是区域性的,并受到不同季节的强烈调节,在夏季表现出中纬度冷却,并在冬季表现出北极变暖。此外,随着硫二氧化硫发射的大小增加,气候反应变得越来越不敏感,对排放强度的变化不敏感,这是2014 - 2015年霍鲁霍隆爆发的20至30倍的喷发的升级。火山喷发通常被认为会导致表面冷却,但我们的结果表明,这是一种过度的简化,尤其是在北极,在北极发现变暖是秋季和冬季的主要反应。
2020 年,地球大气中储存的主要温室气体继续增加。地球表面的全球年平均二氧化碳 (CO 2 ) 浓度为 412.5 ± 0.1 ppm,比 2019 年增加了 2.5 ± 0.1 ppm,是现代仪器记录和 80 万年前的冰芯记录中的最高值。虽然由于 COVID-19 大流行期间人类活动的减少,估计全球人为 CO 2 排放量在年内减少了约 6%–7%,但这种减少并没有对大气中的 CO 2 积累产生实质性影响,因为这是一个相对较小的变化,甚至小于陆地生物圈驱动的年际变化。2020 年,全球海洋净吸收了约 3.0 千兆克的人为碳,是 39 年来的最高记录,比 1999-2019 年的平均水平高出近 30%。2020 年初,赤道东太平洋的弱厄尔尼诺现象在年底冷却并转变为温和的拉尼娜现象。即便如此,全球陆地和海洋的年表面温度仍是 19 世纪中后期有记录以来最高的三个之一。在欧洲,17 个国家报告了创纪录的年平均气温,导致欧洲大陆经历了有记录以来最热的一年。其他地区,日本、墨西哥和塞舌尔也经历了创纪录的高年平均气温。在加勒比地区,阿鲁巴、马提尼克和圣卢西亚报告了历史最高月度气温。在美国,加利福尼亚州死亡谷的 Furnace Creek 在 8 月 16 日达到 54.4°C,这是自 1931 年以来地球上测量到的最高温度,尚待确认。在北纬 60° 以北,北极陆地地区的年平均气温比 1981-2010 年平均值高 2.1°C,是 121 年来的最高记录。6 月 20 日,俄罗斯 Verkhoyansk(北纬 67.6°)观测到 38°C 的气温,暂时是北极圈内有史以来测量到的最高气温。在南半球的对极附近,一条大气河流(大气中一条狭长的区域,将热量和水分从亚热带和中纬度输送过来)在南半球夏季将亚热带和中纬度的极端温暖带到了南极洲的部分地区。2 月 6 日,埃斯佩兰萨站记录到 18.3°C 的气温,这是南极洲有记录以来的最高气温,比 2015 年创下的纪录高出 1.1°C。此次高温还导致了 43 年来最大的夏末地表融化事件,影响了南极半岛 50% 以上的地区。8 月份,南极洲周边海域的每日海冰范围从低于平均水平转为高于平均水平,标志着自 2016 年南半球春季以来海冰范围持续低于平均水平的局面结束。
2020 年,地球大气中储存的主要温室气体继续增加。地球表面的全球年平均二氧化碳 (CO 2 ) 浓度为 412.5 ± 0.1 ppm,比 2019 年增加了 2.5 ± 0.1 ppm,是现代仪器记录和 80 万年前的冰芯记录中的最高值。虽然由于 COVID-19 大流行期间人类活动的减少,估计全球人为 CO 2 排放量在年内减少了约 6%–7%,但这种减少并没有对大气中的 CO 2 积累产生实质性影响,因为这是一个相对较小的变化,甚至小于陆地生物圈驱动的年际变化。2020 年,全球海洋净吸收了约 3.0 千兆克的人为碳,是 39 年来的最高记录,比 1999-2019 年的平均水平高出近 30%。2020 年初,赤道东太平洋的弱厄尔尼诺现象在年底冷却并转变为温和的拉尼娜现象。即便如此,全球陆地和海洋的年表面温度仍是 19 世纪中后期有记录以来最高的三个之一。在欧洲,17 个国家报告了创纪录的年平均气温,导致欧洲大陆经历了有记录以来最热的一年。其他地区,日本、墨西哥和塞舌尔也经历了创纪录的高年平均气温。在加勒比地区,阿鲁巴、马提尼克和圣卢西亚报告了历史最高月度气温。在美国,加利福尼亚州死亡谷的 Furnace Creek 在 8 月 16 日达到 54.4°C,这是自 1931 年以来地球上测量到的最高温度,尚待确认。在北纬 60° 以北,北极陆地地区的年平均气温比 1981-2010 年平均值高 2.1°C,是 121 年来的最高记录。6 月 20 日,俄罗斯 Verkhoyansk(北纬 67.6°)观测到 38°C 的气温,暂时是北极圈内有史以来测量到的最高气温。在南半球的对极附近,一条大气河流(大气中一条狭长的区域,将热量和水分从亚热带和中纬度输送过来)在南半球夏季将亚热带和中纬度的极端温暖带到了南极洲的部分地区。2 月 6 日,埃斯佩兰萨站记录到 18.3°C 的气温,这是南极洲有记录以来的最高气温,比 2015 年创下的纪录高出 1.1°C。此次高温还导致了 43 年来最大的夏末地表融化事件,影响了南极半岛 50% 以上的地区。8 月份,南极洲周边海域的每日海冰范围从低于平均水平转为高于平均水平,标志着自 2016 年南半球春季以来海冰范围持续低于平均水平的局面结束。
15. 补充说明 合同官员代表 (COR) 是 Larry Wiser。 16. 摘要 需要改进长期路面性能 (LTPP) 计划的气候数据,以支持当前和未来关于气候对路面材料、设计和性能的影响的研究。机械经验路面设计指南 (MEPDG) 的校准和增强只是这些新兴需求的一个例子。一种新兴的气候数据源,现代时代回顾性分析研究和应用 (MERRA),由美国国家航空航天局 (NASA) 为其内部建模需求而开发,从 1979 年开始在相对细粒度的均匀网格上提供连续的每小时天气数据。MERRA 基于再分析模型,该模型将计算的模型场(例如大气温度)与在空间和时间上不规则分布的地面、海洋、大气和卫星观测相结合。 MERRA 数据的时间分辨率为每小时,空间分辨率为纬度 0.5 度 x 经度 0.67 度(中纬度约为 31.1 x 37.30 英里),覆盖全球。MERRA 数据与最佳地面观测数据进行了比较,无论是统计上还是对路面性能的影响方面,都与使用 MEPDG 预测的结果进行了比较。这些分析包括对 MEPDG 性能预测对基础变化的敏感性进行系统定量评估
摘要:2019 年 5 月下旬,智利南部(南美洲西部,36°–38°S)报告称 24 小时内至少发生了 7 次龙卷风,其中 EF1 和 EF2 事件造成基础设施严重损坏,数十人受伤,一人死亡。尽管有传闻证据和类似历史事件的记载,但直到 2019 年爆发之前,智利龙卷风的威胁一直受到怀疑。本文,我们描述了这些龙卷风风暴形成的天气尺度特征,包括南太平洋沿岸延伸的西南-东北槽,以及大面积的锋后不稳定区。龙卷风似乎嵌入在一个适度不稳定的环境(对流可用势能为正但小于 1,000 J kg −1 )和强烈的中低层风切变中,近地面风暴相对螺旋度值较高(接近 −200 m 2 s −2 ),明显不同于北美大平原龙卷风(环境高度不稳定),但类似于以前在北美、澳大利亚和欧洲中纬度地区观测到的冷季龙卷风。通过重新分析过去 10 年的降雨和闪电数据,我们发现我们所在地区的龙卷风与 CAPE 和低层风切变的局部极值有关,其中低层涡度生成参数中的两者组合似乎可以作为龙卷风和非龙卷风环境之间的简单一阶判别式。F
NOAA 的全球海洋监测和观测 (GOMO) 计划提供长期、高质量、现场全球海洋观测和产品,对于提供和增强地球系统模型以及每日至十年时间尺度的预报至关重要。在 GOMO 内,北极研究计划 (ARP) 专注于阿拉斯加北极地区,同时参与泛北极计划以了解整个北极系统。自 2000 年以来,该地区的气温上升速度至少是全球平均水平的两倍,导致海水变暖、夏季海冰条件迅速下降、海冰更年轻、更薄,陆地温度上升。这些变化引发了一系列影响,威胁到北极生态系统的稳定、土著社区的粮食和文化安全、沿海村庄的恢复力以及阿拉斯加渔业的生产力。此外,北极变化的影响范围超出北极圈,影响着全球中纬度的天气和气候模式。改进 NOAA 在北极的海洋、陆地和大气观测系统对于跟踪、了解和预测对阿拉斯加、美国大陆和世界的威胁至关重要。ARP 赞助了多项持续的现场海洋、海冰和大气边界层观测以及互补的海洋生态系统研究,以描述北白令海、楚科奇海和波弗特海对气候变化的反应。ARP 还支持模型改进和使用,以支持 NOAA 的科学、服务和管理使命。
大气与海洋之间的相互作用在能量重新分配方面起着至关重要的作用,从而维持气候系统的能量平衡。在本文中,我们研究了大气和海洋热量输送变化之间的补偿。受先前主要使用数值气候模型的研究启发,使用再分析数据集研究了这种所谓的 Bjerknes 补偿。我们发现大气能量输送 (AMET) 和海洋能量输送 (OMET) 变化在再分析数据集中通常具有很好的一致性。通过多个再分析产品,我们发现从年际到十年的时间尺度,Bjerknes 补偿存在于北半球从 40°N 到 70°N 的几乎所有纬度。补偿率在不同时间尺度的不同纬度达到峰值,但它们总是位于亚热带和亚极地地区。与一些数值气候模型实验不同,这些实验将补偿归因于瞬态涡流输送对数十年时间尺度上的 OMET 变化的响应,我们发现平均流对 OMET 变化的响应导致了 Bjerknes 补偿,从而导致冬季中纬度地区 Ferrel 环流在数十年时间尺度上的移动。该环流本身由涡流动量通量驱动。海洋对 AMET 变化的响应主要是风驱动的。在夏季,几乎没有任何补偿,所提出的机制不适用。鉴于历史记录较短,我们无法确定是海洋驱动大气变化还是相反。