图1个在生物医学中的纳米普应用的特征区域。根据印迹结构的组成和性质,MIP可以作为生物传感,分子疗法和开发新的细胞研究工具的强大平台。例如,针对特定细胞表面标记的MIP可以区分具有此标记物不同表达的不同类型的细胞。此外,对特定蛋白质的MIP使用允许其快速的表位发现,从而保护蛋白质的MIP结合区域可免受胰蛋白酶消化的影响,并且未受保护的区域会降解。5随后通过质谱法鉴定了MIP保护的肽序列。针对细胞表面受体制造的MIP可以用于药物的靶向递送。与细胞表面标记结合的MIP可以标记全细胞。MIP还可以防止配体与其受体结合,从而影响细胞的生理。
囊性纤维化(CF)是一种由CF跨膜诱导调节剂(CFTR)蛋白的产生和/或功能受损引起的单基因疾病。尽管我们先前已经显示出对最常见的致病突变的校正,但整个CF基因中还有许多其他致病突变。精确插入CFTR cDNA的自体气道干细胞疗法,无论因果突变如何,几乎所有CF的CFTR基因座都可以为几乎所有CF papentent摄取耐用的治疗方法。在这里,我们使用CRISPR-CAS9和两个与CFTR cDNA的两半相关的病毒(AAVS),在上部机构干细胞(UABCS)和人类bronthial Checepselial Chial Chirial Chips(Hymanthial Chialical Clonial Clonial Clonial Clonial Chilial Chialial Clial Cyselial Chillial Cyselial Chirial Chirial Chillial Clyeclial)(Huncseps)(TCD19)和截断的CD19(TCD19),顺序插入完整的CFTR cDNA(TCD19)。从11个不同的CF供体中获得60%至80%的TCD19 + UABC和HBEC,并从11个不同的CF供体中获得60% - 80%的TCD19 + UABC和HBEC。在空气界面上培养的分化上皮单层显示出恢复的CFTR函数,在非CF对照中占CFTR函数的70%。因此,我们的研究可以为几乎所有CF患者(包括无法使用最近批准的调节剂疗法治疗的患者)开发治疗。
子宫内膜癌是发达国家最常见的妇科癌症,其发病率也有所增加。大多数子宫内膜癌患者患有早期疾病和有利的预后;然而,主要包括高级或II型子宫内膜癌(例如浆液,透明细胞和癌)的子宫内膜癌表现出晚期/复发性疾病和衰退预后。具有侵略性子宫内膜癌患者需要新颖的治疗性开发。最近的基因组和免疫组织化学分析显示,在20%-II型子宫内膜癌患者中,人类表皮生长因子受体2(HER2)过表达/基因扩增。从历史上看,HER2有针对性的治疗已为包括乳腺癌和胃癌在内的各种主要癌症开发。值得注意的是,HER2针对II型子宫内膜癌患者的靶向治疗的最新进展也有望改变。同时,应建立对子宫内膜癌的优化HER2测试,作为同伴诊断。在这篇综述中,我们总结了有关子宫内膜癌,当前治疗,优化HER2测试,有关HER2靶向治疗的关键临床试验的最新发现,以及包括侵袭性子宫内膜癌的未来方向,包括浆液性癌和癌肉瘤。
在过去几年中,在植物中使用基于RNA的CAS9基因组编辑的进展一直很快。基因组编辑的理想应用是基因靶向(GT),因为它允许广泛的精确修饰。但是,这仍然是不具备的,尤其是在关键农作物中。在这里,我们使用Planta策略描述了CAS9目标位置的成功,可遗传的基因靶向,但使用小麦矮人病毒复制品未能实现相同的方法,以增加维修模板的拷贝数。没有复制子,我们能够删除目标基因的150 bp的编码顺序,同时将框架内麦克利融合在一起。从14种原始转基因植物开始,两家植物似乎具有所需的基因靶向事件。从其中一种T0植物中,确定了三个独立的基因靶向事件,其中两个是可遗传的。当包括复制子时,产生了39种T0植物,并显示为修复模板的高拷贝数。然而,尽管与非修复策略相比,T1筛选的17条线没有引起显着或可遗传的基因靶向事件。调查表明,复制子方法创建的高拷贝数量的高拷贝数导致假阳性PCR结果,在序列水平上与GT研究广泛使用的连接PCR屏幕中的真实GT事件无法区分。在成功的非修复方法中,在T1中获得了可遗传基因靶向事件,随后,发现T-DNA与靶向基因座有关。因此,靶标和供体位点的物理接近可能是成功基因靶向的一个因素。
CRISPR–Cas9 方法已被用于在植物中产生随机插入和缺失、大量缺失、短序列的靶向插入或替换以及精确的碱基变化 1 – 7 。然而,用于功能基因组学研究和作物性状改良所需的长序列和基因的靶向插入或替换的通用方法很少,并且很大程度上取决于选择标记的使用 8 – 11 。基于在哺乳动物细胞中开发的方法 12 ,我们利用化学修饰的供体 DNA 和 CRISPR–Cas9 将长达 2,049 个碱基对 (bp) 的序列(包括增强子和启动子)插入水稻基因组,效率为 25%。我们还报道了一种依赖于同源性定向修复、化学修饰的供体 DNA 和目标位点串联重复序列的基因替换方法,以 6.1% 的效率实现了长达 130 bp 的序列的替换。在哺乳动物细胞中,使用平端的、5'-磷酸化的双链寡脱氧核苷酸 (dsODN),在两条 DNA 链的 5' 和 3' 端带有两个硫代磷酸酯键,可导致寡脱氧核苷酸 12 的强有力靶向整合。硫代磷酸酯键修饰旨在稳定细胞中的寡核苷酸,而 5'-磷酸化可促进非同源末端连接 (NHEJ),这是修复双链断裂 (DSB) 的主要途径,尤其是在培养细胞中。在用于再生小植株的培养植物细胞中,例如水稻愈伤组织细胞,NHEJ 也是主要的 DSB 修复途径 10,13。因此,这种类型的修饰 dsODN 可能会提高植物细胞中靶向插入的效率。为了验证这一假设,从水稻ADH1(酒精脱氢酶1)14 的5′非翻译区(UTR)中取出一个60bp的翻译增强子(ADHE)作为供体DNA,插入水稻的主要耐盐基因座SKC1(补充表1)15。如图1a所示,体外合成的ADHE供体DNA两侧有两个带有硫代磷酸酯键和5′-磷酸化修饰的核苷酸(ADHE;见补充图1b)。为了与传统供体DNA进行比较,还合成了未修饰的单链和双链寡脱氧核苷酸(ssADHE和dsADHE),带有三核苷酸多态性以供检测(图1b和补充图1b)。设计了一个针对 5 ʹ UTR 的单向导 RNA (sgRNA) (sgRNA-1),并将其构建到 CRISPR–Cas9 载体 pCBSG032 中(图 1c 和补充图 1a)。将三个供体 DNA 寡核苷酸按等摩尔比例混合,然后通过粒子轰击法将其与 CRISPR–Cas9 质粒 DNA (sgRNA-1) 一起引入中花 11 (ZH11) 水稻愈伤组织中。
为了提高农作物的产量、抗旱性、抗虫性和营养价值等,现代农业依赖于植物基因工程。自从重组 DNA 技术问世以来,人们已经利用多种工具对植物进行基因转化,例如农杆菌、病毒介导的基因转移、直接基因转移系统(例如电穿孔、粒子枪、显微注射和化学方法)。所有这些传统方法都缺乏特异性,转基因被整合到植物 DNA 的随机位点。最近,出现了新的基因靶向技术,例如工程核酸酶(例如锌指核酸酶)、转录激活因子样效应核酸酶、成簇的规则间隔短回文重复序列。其他进展包括用于递送基因编辑组件的工具的改进,这些组件包括载体蛋白和碳纳米管。本综述重点介绍植物中靶向特异性基因递送的最新技术、它们的表达以及植物生物技术的未来方向。