摘要:如今,为了克服可再生能源整合带来的新挑战,成本更低、体积更小、效率更高的电源转换器正在不断发展。在此背景下,可再生能源应用中对精心设计的电源转换器的需求日益增加,以减少能源利用率并处理各种负载。本文提出了一种用于 DC-DC 转换的中心抽头桥级联串联谐振 LC 双有源桥 (DAB) 转换器。所提出的转换器的零件数量少,可以实现高功率密度设计,同时降低成本。由于采用电流阻断特性消除了反向电流,因此所提出的转换器降低了传导损耗。反向电流阻断还可以在很宽的工作范围内实现零电压开关 (ZVS) 和零电流开关 (ZCS)。因此,与传统的 DAB 转换器相比,使用简单的固定频率调制 (FFM) 方案可提供更宽的工作范围。基于传导损耗和开关损耗对所提出的转换器和传统的 DAB 转换器进行了全面比较,以说明性能改进。最后,通过仿真和实验结果验证了所提出的转换器的有效性。
erovskite太阳能电池(PSC)近年来取得了前所未有的进展,最高的认证效率达到了25%以上1。为了进一步提高PSC的效率和过度提高单一结构太阳能电池的详细平衡理论限制,通常通过与成熟光伏技术的宽带(WBG)Perovskites进行整合来应用串联太阳能电池,例如CrystallineIne,例如Crystallineine Silicon(C-SI),Copper(C-SI),Copper(copper),copper(in,ga)2(cigs per)2(cigs per)2 - 4或其他cig pers peh of pers pers peh of peacs 2 - 4或其他。在这些基于钙钛矿的串联光伏技术中,Perovskite – Silicon串联太阳能电池已成为一种易于商业化的,报告的有效性超过29%(参考文献8)。单片的两末端钙钛矿 - 锡的串联设备仍然主要基于前侧和后方胶片和后侧胶合晶体C-SI的基础,不幸的是,由于光反射9造成的光电损失很大。双面纹理的C-SI具有增加的光捕捞,可为钙钛矿 - 硅串联设备提供高效的上限10-12。第一个完全纹理的钙钛矿 - 丝状细胞具有前纹理的质地,其尺寸最高为6 µm,其中WBG钙晶硅质的质感硅上的硅酸盐是通过蒸发和溶液涂层的组合结合形成的。最近已证明在硅前表面上的质地较小或以下,具有可比的抗反省特性,可以使用更简单的基于单步分解的基于单步的叶片涂料或自旋涂料或旋转甲基ODS 11、11、12,从而实现了完全纹理的perovskite-silicon串联装置。然而,所报道的钙钛矿 - 硅串联太阳能电池的效率仅达到25-26%,低于双面纹理的硅结构的全部潜力。比在平坦硅11-14上产生的串联电池的低功率转换效率(PCE)主要由较小的开路电压(V OC)和填充因子更小。在技术上仍然很难使用溶液方法沉积钙钛矿层以覆盖纹理的硅,甚至
我们感兴趣的是设计计算高效的架构来解决有限时域马尔可夫决策过程 (MDP),这是一种流行的多阶段决策问题建模框架 [1,22],具有广泛的应用,从数据和呼叫中心的调度 [12] 到间歇性可再生资源的能源管理 [13]。在 MDP 中,在每个阶段,代理都会根据系统状态做出决策,从而获得即时奖励,并相应更新状态;代理的目标是找到一个最优策略,使时间范围内的总预期奖励最大化。虽然寻找解决 MDP 的有效算法一直是一个活跃的研究领域(有关调查请参阅 [20,17]),但我们将采取不同的方法。我们不是从头开始创建新算法,而是研究如何设计架构,以创造性的方式利用现有的 MDP 算法作为“黑匣子”,以获得额外的性能提升。作为朝这个方向迈出的第一步,我们提出了时间串联启发式方法,它沿时间轴采用分而治之的方法:对于具有水平线 { 0 ,... ,T − 1 } 的 MDP,我们将原始问题实例(I 0)在水平线上划分为两个子实例:0 ,... ,T
高荧光(HF)是一种利用激子在两个发光体之间转移的相对较新的现象,需要对分子能级进行仔细的成对调整,并被认为是朝着开发新的高效OLED系统发展的关键步骤。迄今为止,据报道,几乎只有几个具有所需窄带发射但中等外部量子效率的HF黄色发射器(EQE <20%)。这是因为尚未提出一种系统的系统策略,该策略尚未提出,尚未提出作为有效激子转移的补充机制,尚未提出过Förster共振能量传递(FRET)和三重态(TTS)过渡。在此,我们提出了一种理性方法,该方法允许通过微妙的结构修改,这是由同一供体和受体亚基构建的一对化合物,但可以在这些歧义性碎片之间进行多种通信。TADF活性掺杂剂基于与甲壳唑部分相关的萘酰亚胺支架,通过引入额外的键不仅导致π-云的扩大,而且还导致刚性刚化,还会导致刚性和抑制供体的旋转。这种结构变化阻止了TADF,并允许引导带盖和激发状态能量同时追求FRET和TTS过程。使用呈现的发射器的新型OLED设备显示出极好的外部量子效率(高达27%)和最大狭窄的全宽度(40nm),这是能量水平很好的结果。提出的设计原理证明,仅需要进行较小的结构修饰才能获得HF OLED设备的商业染料。
在加拿大印刷。订单号SI-EP-1778保留所有权利©2022,加拿大有限公司Siemens.ca/powerdistripution本文档中提供的技术数据是基于实际情况或根据ASSNEDENSED参数的,因此不应依靠任何特定的应用程序来依靠任何项目的绩效保证。实际结果取决于可变条件。因此,西门子对本文所包含的内容的准确性,货币或完整性没有做出陈述,保证或保证。如果要求,我们将提供有关任何客户的特定应用程序的特定技术数据或规格。我们的公司不断参与工程和发展。因此,我们保留随时修改此处包含的技术和产品规格的权利。
基因复制和转录增强子的出现/修饰被认为对动物进化过程中表型创新做出了巨大贡献。尽管如此,人们对基因复制后增强子如何进化以及调控信息如何在复制基因之间重新连接知之甚少。果蝇 bric-a-brac (bab) 复合体由串联旁系同源基因 bab1 和 bab2 组成,为解决这些问题提供了范例。我们之前描述了一种调节发育足中 bab2 表达的基因间增强子 (名为 LAE)。我们在此显示直接与 LAE 结合的 bab2 调节子也控制跗骨细胞中的 bab1 表达。通过 CRISPR/Cas9 介导的基因组编辑切除 LAE 表明,这种增强子似乎参与了 bab1 和 bab2 在腿部组织中共表达,但并不是严格必需的。相反,LAE 增强子对于沿近端-远端足轴的旁系同源物特异性 bab2 表达至关重要。染色质特征和表型挽救实验表明,LAE 功能部分冗余,腿特异性调控信息与 bab1 转录单元重叠。系统基因组学分析表明 (i) bab 复合体起源于 Cyclorrhapha dipteran 亚系早期祖先单基因的复制,以及 (ii) LAE 序列在 Brachycera 亚目中很早就已进化固定,因此早于基因复制事件。这项工作为增强子提供了新的见解,特别是关于它们的出现、维持和进化过程中的功能多样化。
基因特异性DNA串联重复序列(TRS)的扩展,于1991年首次描述为人类引起疾病的突变,现在已知会引起60型表型,不仅是疾病,而不仅仅是在人类中。tr是遗传变异的一种常见形式,并在人类,狗,植物,牡蛎和酵母中观察到生物学后果,并观察到。重复疾病表现出非典型的临床特征,遗传预期以及家庭成员中多种和部分渗透的表型。发现引起疾病的重复扩张基因座通过DNA测序和综合分析中的技术进步加速。在2019年至2021年之间,报告了17种新的引起疾病的TR扩张,总共有63个TR基因座(> 69个疾病),可能发现更多的发现,以及更多的生物体。最近和历史课程表明,正确评估的临床表现,再加上遗传和生物学意识,可以指导发现引起疾病的疾病的发现。我们强调了TR突变的批判性但不足的方面。重复基序可能不存在于当前的参考基因组中,而是即将到来的无间隙长阅读参考。重复基序尺寸可以是单个核苷酸到千目标/单位。在给定的基因座,重复基序序列纯度可能会随结果而变化。致病性重复可以是非patheogenic TR中的“联系”。TRS的扩展,收缩和体长期变化可能会带来临床/生物逻辑后果。TR不稳定性发生在人类和其他生物中。TR可以表观遗传修饰和/或染色体脆弱的位点。我们讨论了与疾病相关的TR不稳定性的扩大领域,突出了前景,临床和遗传线索,工具和挑战,以进一步发现引起疾病的TR不稳定性并了解其生物学和病理学影响 - 即将扩大的远景。
polyactic酸(PLA)是一种可生物降解的聚合物,目前用于药物和手术设备。有人担心环乳酸(CPLA)是PLA合成的副产品,可以作为不良污染物引入人体。我们通过液相色谱质谱法(LC – MS)对CPLA七聚体(CPLA-7)进行了定量投资。我们发现CPLA-7与血清蛋白强烈结合,并且在常规剥夺后仅回收了62%的CPLA-7。因此,我们通过牛血清白蛋白(BSA)涂层色谱柱直接将血清注入LC-MS/MS系统,并发现CPLA-7的回收率提高到84%,并且检测(S/N = 3)和定量极限(S/N = 10和低于15%的相对标准偏差)为1.5和2.5和2.5和2.5 ng/g。我们得出结论,直接注射LC -MS/MS使用BSA列是血清中CPLA的一种简单有效的定量分析方法。©2008 Elsevier B.V.保留所有权利。
过早的婴儿应在适当的年代年龄进行免疫接种。这对于乙型肝炎感染母亲所生的婴儿至关重要,因为延迟会增加感染的机会。但是,疫苗接种后呼吸暂停的发生量特别高于出生的婴儿。因此,在医院住院的非常过早的婴儿(出生≤28周的妊娠≤28周)应在接受第一次免疫时进行48-72小时的呼吸监测,尤其是那些先前具有呼吸道不成熟史的免疫。如果婴儿在第一次免疫后患有呼吸暂停,心动过缓或去饱和,则第二次免疫也应在医院中进行,呼吸道监测48-72小时。由于这组婴儿的疫苗接种益处很高,因此不应扣留或延迟疫苗。
破译非编码基因组的调节功能是现代生物学的巨大挑战。模型物种长期以来一直处于生物发现和生物医学创新的最前沿,但是我们对顺式调节逻辑的了解仍然不完整(Manolio等人。2017)。许多重要的问题 - 主要:我们应该如何以组织特异性的方式变异蝇剂以改变其活性?哪些小鼠疾病基因的调节变体功能性?我们如何预测地编辑ge-Nome来有效指导实验?回答这些问题需要解释任何基因组变体的特定效应,包括对染色质状态,组蛋白修饰和转录因子(TFS)的结合的变化。在整个基因组变异范围内应对这一挑战需要从实验研究(例如CHIP-SEQ数据)中概括以了解调控代码,从而可以预测任何基因组变体的效果。这些影响必须在特定的文本中预测,包括发育阶段,细胞和组织类型以及药物治疗。模型生物的现有方法未达到这个目标。一种常见的方法是扫描具有位置重量矩阵的高度保守的结合位点。然而,这种主题的上下文信息有限,并且未能考虑经常描绘组蛋白标记或征用访问性的多个相互作用因素(Zhou and Troyanskaya 2015; Wagih等>2018)。2015; Avsec等。2021)。相反,基于序列的深度学习模型已成功地用于人类基因组学中,以从大规模测序数据中学习这种特定于文本的顺式调节代码,而无需使用手工设计的功能。特别是,这些模型中使用的许多连续的卷积层使它们可以学习相对复杂的主题,我们认为它们之间的相互作用(Lecun等人。这种灵活性,结合了允许这些模型的效率